|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
EBOOKCENTRAL_on1140400998 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr |n||||||||| |
008 |
200212t20192019riua ob 001 0 eng d |
040 |
|
|
|a UIU
|b eng
|e rda
|e pn
|c UIU
|d YDX
|d EBLCP
|d OCLCQ
|d UKAHL
|d N$T
|d EYM
|d OCLCO
|d UX1
|d VT2
|d OCLCQ
|d OCLCO
|d GZM
|d OCLCQ
|d OCLCO
|d S9M
|d N$T
|d OCLCL
|
019 |
|
|
|a 1262669363
|
020 |
|
|
|a 9781470455125
|q (ebook)
|
020 |
|
|
|a 1470455129
|q (ebook)
|
020 |
|
|
|a 9781470437886
|q (paperback)
|
020 |
|
|
|a 1470437880
|q (paperback)
|
020 |
|
|
|z 1470437880
|q (paperback)
|
029 |
1 |
|
|a AU@
|b 000069397347
|
035 |
|
|
|a (OCoLC)1140400998
|z (OCoLC)1262669363
|
050 |
|
4 |
|a QA612.7
|b .I73 2019
|
082 |
0 |
4 |
|a 514/.24
|2 23
|
084 |
|
|
|a 14F42
|a 55Q45
|a 55S10
|a 55T15
|a 16T05
|a 55P42
|a 55Q10
|a 55S30
|2 msc
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Isaksen, Daniel C.,
|d 1972-
|e author.
|
245 |
1 |
0 |
|a Stable stems /
|c Daniel C. Isaksen.
|
264 |
|
1 |
|a Providence :
|b American Mathematical Society,
|c [2019]
|
264 |
|
4 |
|c ©2019
|
300 |
|
|
|a 1 online resource (viii, 159 pages) :
|b illustrations
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Memoirs of the American Mathematical Society,
|x 0065-9266 ;
|v number 1269
|
520 |
3 |
|
|a We present a detailed analysis of 2-complete stable homotopy groups, both in the classical context and in the motivic context over C. We use the motivic May spectral sequence to compute the cohomology of the motivic Steenrod algebra over C through the 70-stem. We then use the motivic Adams spectral sequence to obtain motivic stable homotopy groups through the 59-stem. In addition to finding all Adams differentials in this range, we also resolve all hidden extensions by 2, eta, and nu, except for a few carefully enumerated exceptions that remain unknown. The analogous classical stable homotopy groups are easy consequences. We also compute the motivic stable homotopy groups of the cofiber of the motivic element tau. This computation is essential for resolving hidden extensions in the Adams spectral sequence. We show that the homotopy groups of the cofiber of tau are the same as the E2-page of the classical Adams-Novikov spectral sequence. This allows us to compute the classical Adams-Novikov spectral sequence, including differentials and hidden extensions, in a larger range than was previously known.
|
500 |
|
|
|a "November 2019; Volume 262; number 1269 (sixth of 7 numbers)"--Cover
|
504 |
|
|
|a Includes bibliographical references (pages 151-153) and index.
|
588 |
0 |
|
|a Description based on print version record.
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
650 |
|
0 |
|a Homotopy theory.
|
650 |
|
0 |
|a Homotopy groups.
|
650 |
|
0 |
|a Algebraic topology.
|
650 |
|
6 |
|a Homotopie.
|
650 |
|
6 |
|a Groupes d'homotopie.
|
650 |
|
6 |
|a Topologie algébrique.
|
650 |
|
7 |
|a Homotopía
|2 embne
|
650 |
|
7 |
|a Álgebras topológicas
|2 embne
|
650 |
|
7 |
|a Algebraic topology
|2 fast
|
650 |
|
7 |
|a Homotopy groups
|2 fast
|
650 |
|
7 |
|a Homotopy theory
|2 fast
|
758 |
|
|
|i has work:
|a Stable stems (Text)
|1 https://id.oclc.org/worldcat/entity/E39PCGPXPcdRdG33W4rRCwTVhb
|4 https://id.oclc.org/worldcat/ontology/hasWork
|
776 |
0 |
8 |
|i Print version: Isaksen, Daniel C., 1972-
|t Stable stems.
|d Providence : American Mathematical Society, [2019]
|z 9781470437886
|w (DLC) 2020023141
|w (OCoLC)1121158657
|
830 |
|
0 |
|a Memoirs of the American Mathematical Society ;
|v no. 1269.
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=6118462
|z Texto completo
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH37445317
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL6118462
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 2377018
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 301114470
|
994 |
|
|
|a 92
|b IZTAP
|