|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
EBOOKCENTRAL_on1140400914 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr |n||||||||| |
008 |
200212t20192019riua ob 000 0 eng d |
040 |
|
|
|a UIU
|b eng
|e rda
|e pn
|c UIU
|d YDX
|d EBLCP
|d OCLCQ
|d UKAHL
|d EYM
|d OCLCO
|d QGK
|d UX1
|d VT2
|d OCLCQ
|d OCLCO
|d GZM
|d OCLCQ
|d OCLCO
|d S9M
|d OCLCL
|
019 |
|
|
|a 1262683917
|
020 |
|
|
|a 9781470455149
|q (ebook)
|
020 |
|
|
|a 1470455145
|q (ebook)
|
020 |
|
|
|z 9781470439132
|q (paperback)
|
020 |
|
|
|z 1470439131
|q (paperback)
|
029 |
1 |
|
|a AU@
|b 000069424709
|
035 |
|
|
|a (OCoLC)1140400914
|z (OCoLC)1262683917
|
050 |
|
4 |
|a QA3
|b .Am35 no.1270
|
082 |
0 |
4 |
|a 514.32
|2 23
|
084 |
|
|
|a 49J52
|a 49Q20
|a 35K55
|a 58J35
|a 35K90
|a 31C25
|a 58B20
|2 msc
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Ambrosio, Luigi,
|e author.
|
245 |
1 |
0 |
|a Nonlinear diffusion equations and curvature conditions in metric measure spaces /
|c Luigi Ambrosio, Andrea Mondino, Giuseppe Savaré.
|
264 |
|
1 |
|a Providence :
|b American Mathematical Society,
|c [2019]
|
264 |
|
4 |
|c ©2019
|
300 |
|
|
|a 1 online resource (v, 121 pages) :
|b illustrations
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Memoirs of the American Mathematical Society,
|x 0065-9266 ;
|v number 1270
|
500 |
|
|
|a "November 2019; Volume 262; number 1270 (seventh of 7 numbers)"--Cover
|
504 |
|
|
|a Includes bibliographical references (pages 119-121)
|
520 |
3 |
|
|a Aim of this paper is to provide new characterizations of the curvature dimension condition in the context of metric measure spaces (X, d, m). On the geometric side, our new approach takes into account suitable weighted action functionals which provide the natural modulus of K-convexity when one investigates the convexity properties of N-dimensional entropies. On the side of diffusion semigroups and evolution variational inequalities, our new approach uses the nonlinear diffusion semigroup induced by the N-dimensional entropy, in place of the heat flow. Under suitable assumptions (most notably the quadraticity of Cheeger's energy relative to the metric measure structure) both approaches are shown to be equivalent to the strong CD*(K, N) condition of Bacher-Sturm.
|
588 |
0 |
|
|a Description based on print version record.
|
505 |
0 |
0 |
|g Chapter 1. Introduction
|g Chapter 2.
|t Contraction and Convexity via Hamiltonian Estimates: an Heuristic Argument
|g Part 1.
|t Nonlinear Diffusion Equations and Their Linearization in Dirichlet Spaces
|g Chapter 3.
|t Dirichlet Forms, Homogeneous Spaces and Nonlinear Diffusion
|g Chapter 4.
|t Backward and Forward Linearizations of Nonlinear Diffusion
|g Part 2.
|t Continuity Equation and Curvature Conditions in Metric Measure Spaces
|g Chapter 5.
|t Preliminaries
|g Chapter 6.
|t Absolutely Continuous Curves in Wasserstein Spaces and Continuity Inequalities in a Metric Setting
|g Chapter 7.
|t Weighted Energy Functionals along Absolutely Continuous Curves
|g Chapter 8.
|t Dynamic Kantorovich Potentials, Continuity Equation and Dual Weighted Cheeger Energies
|g Chapter 9.
|t The \RCDS KN Condition and Its Characterizations through Weighted Convexity and Evolution Variational Inequalities
|g Part 3.
|t Bakry-¡mery Condition and Nonlinear Diffusion
|g Chapter 10.
|t The Bakry-¡mery Condition
|g Chapter 11.
|t Nonlinear Diffusion Equations and Action Estimates
|g Chapter 12.
|t The Equivalence Between \BE KN and \RCDS KN.
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
650 |
|
0 |
|a Differential calculus.
|
650 |
|
6 |
|a Calcul différentiel.
|
650 |
|
7 |
|a Cálculo diferencial
|2 embne
|
650 |
|
7 |
|a Differential calculus
|2 fast
|
700 |
1 |
|
|a Mondino, Andrea,
|e author.
|
700 |
1 |
|
|a Savaré, Giuseppe,
|e author.
|
758 |
|
|
|i has work:
|a Nonlinear diffusion equations and curvature conditions in metric measure spaces (Text)
|1 https://id.oclc.org/worldcat/entity/E39PCGw7WmhK4yvrbVkF4kDhh3
|4 https://id.oclc.org/worldcat/ontology/hasWork
|
776 |
0 |
8 |
|i Print version: Ambrosio, Luigi.
|t Nonlinear diffusion equations and curvature conditions in metric measure spaces.
|d Providence, RI : American Mathematical Society, 2019
|z 9781470439132
|w (DLC) 2020023529
|w (OCoLC)1121159623
|
830 |
|
0 |
|a Memoirs of the American Mathematical Society ;
|v no. 1270.
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=6118470
|z Texto completo
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH37445318
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL6118470
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 301114471
|
994 |
|
|
|a 92
|b IZTAP
|