A Local Relative Trace Formula for the Ginzburg-Rallis Model
Following the method developed by Waldspurger and Beuzart-Plessis in their proofs of the local Gan-Gross-Prasad conjecture, the author is able to prove the geometric side of a local relative trace formula for the Ginzburg-Rallis model. Then by applying such formula, the author proves a multiplicity...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Providence :
American Mathematical Society,
2019.
|
Colección: | Memoirs of the American Mathematical Society Ser.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Cover
- Title page
- Chapter 1. Introduction and Main Result
- 1.1. The Ginzburg-Rallis model
- 1.2. Main results
- 1.3. Organization of the paper and remarks on the proofs
- 1.4. Acknowledgements
- Chapter 2. Preliminaries
- 2.1. Notation and conventions
- 2.2. Measures
- 2.3. (,)-families
- 2.4. Weighted orbital integrals
- 2.5. Shalika Germs
- Chapter 3. Quasi-Characters
- 3.1. Neighborhoods of Semisimple Elements
- 3.2. Quasi-characters of ()
- 3.3. Quasi-characters of \Fg()
- 3.4. Localization
- Chapter 4. Strongly Cuspidal Functions
- 8.5. Local Sections
- 8.6. Calculation of _{ }()
- Chapter 9. Calculation of the limit lim_{ ₂!} _{, }()
- 9.1. Convergence of a premier expression
- 9.2. Combinatorial Definition
- 9.3. Change the truncated function
- 9.4. Proof of 9.3(5)
- 9.5. Proof of 9.3(6)
- 9.6. The split case
- 9.7. Principal proposition
- Chapter 10. Proof of Theorem 5.4 and Theorem 5.7
- 10.1. Calculation of lim_{ ₂!} _{ }(): the Lie algebra case
- 10.2. A Premier Result
- 10.3. Proof of Theorem 5.4 and Theorem 5.7
- 10.4. The proof of (_{ }")= (_{ }")
- Appendix A. The Proof of Lemma 9.1 and Lemma 9.11
- A.1. The Proof of Lemma 9.1
- A.2. The proof of Lemma 9.11
- A.3. A final remark
- Appendix B. The Reduced Model
- B.1. The general setup
- B.2. The trilinear model
- B.3. The generalized trilinear \GL₂ models
- B.4. The middle model
- B.5. The type II models
- Bibliography
- Back Cover