Cargando…

A Local Relative Trace Formula for the Ginzburg-Rallis Model

Following the method developed by Waldspurger and Beuzart-Plessis in their proofs of the local Gan-Gross-Prasad conjecture, the author is able to prove the geometric side of a local relative trace formula for the Ginzburg-Rallis model. Then by applying such formula, the author proves a multiplicity...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Wan, Chen
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Providence : American Mathematical Society, 2019.
Colección:Memoirs of the American Mathematical Society Ser.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mu 4500
001 EBOOKCENTRAL_on1130905898
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |n|---|||||
008 200321s2019 riu o 000 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d OCLCQ  |d LOA  |d OCLCO  |d OCLCF  |d K6U  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL 
066 |c (S 
020 |a 9781470454180 
020 |a 1470454181 
029 1 |a AU@  |b 000069466077 
035 |a (OCoLC)1130905898 
050 4 |a QA243  |b .W36 2019 
082 0 4 |a 512/.482  |q OCoLC  |2 23/eng/20230216 
049 |a UAMI 
100 1 |a Wan, Chen. 
245 1 2 |a A Local Relative Trace Formula for the Ginzburg-Rallis Model 
260 |a Providence :  |b American Mathematical Society,  |c 2019. 
300 |a 1 online resource (102 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Memoirs of the American Mathematical Society Ser. ;  |v v. 261 
588 0 |a Print version record. 
505 0 |6 880-01  |a Cover -- Title page -- Chapter 1. Introduction and Main Result -- 1.1. The Ginzburg-Rallis model -- 1.2. Main results -- 1.3. Organization of the paper and remarks on the proofs -- 1.4. Acknowledgements -- Chapter 2. Preliminaries -- 2.1. Notation and conventions -- 2.2. Measures -- 2.3. (,)-families -- 2.4. Weighted orbital integrals -- 2.5. Shalika Germs -- Chapter 3. Quasi-Characters -- 3.1. Neighborhoods of Semisimple Elements -- 3.2. Quasi-characters of () -- 3.3. Quasi-characters of \Fg() -- 3.4. Localization -- Chapter 4. Strongly Cuspidal Functions 
505 8 |a 8.5. Local Sections -- 8.6. Calculation of _{ }() -- Chapter 9. Calculation of the limit lim_{ ₂!} _{, }() -- 9.1. Convergence of a premier expression -- 9.2. Combinatorial Definition -- 9.3. Change the truncated function -- 9.4. Proof of 9.3(5) -- 9.5. Proof of 9.3(6) -- 9.6. The split case -- 9.7. Principal proposition -- Chapter 10. Proof of Theorem 5.4 and Theorem 5.7 -- 10.1. Calculation of lim_{ ₂!} _{ }(): the Lie algebra case -- 10.2. A Premier Result -- 10.3. Proof of Theorem 5.4 and Theorem 5.7 -- 10.4. The proof of (_{ }")= (_{ }") 
505 8 |a Appendix A. The Proof of Lemma 9.1 and Lemma 9.11 -- A.1. The Proof of Lemma 9.1 -- A.2. The proof of Lemma 9.11 -- A.3. A final remark -- Appendix B. The Reduced Model -- B.1. The general setup -- B.2. The trilinear model -- B.3. The generalized trilinear \GL₂ models -- B.4. The middle model -- B.5. The type II models -- Bibliography -- Back Cover 
520 |a Following the method developed by Waldspurger and Beuzart-Plessis in their proofs of the local Gan-Gross-Prasad conjecture, the author is able to prove the geometric side of a local relative trace formula for the Ginzburg-Rallis model. Then by applying such formula, the author proves a multiplicity formula of the Ginzburg-Rallis model for the supercuspidal representations. Using that multiplicity formula, the author proves the multiplicity one theorem for the Ginzburg-Rallis model over Vogan packets in the supercuspidal case. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Trace formulas. 
650 6 |a Formules de trace. 
650 7 |a Trace formulas  |2 fast 
758 |i has work:  |a A local relative trace formula for the Ginzburg-Rallis Model: the geometric side (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCFDHfv7w68qMKyw97Hv7Md  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Wan, Chen.  |t A Local Relative Trace Formula for the Ginzburg-Rallis Model: the Geometric Side.  |d Providence : American Mathematical Society, ©2019  |z 9781470436865 
830 0 |a Memoirs of the American Mathematical Society Ser. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=5990824  |z Texto completo 
880 8 |6 505-01/(S  |a 4.1. Definition and basic properties -- 4.2. The Lie algebra case -- 4.3. Localization -- Chapter 5. Statement of the Trace Formula -- 5.1. The ingredients of the integral formula -- 5.2. The Main Theorem -- 5.3. The Lie Algebra Case -- Chapter 6. Proof of Theorem 1.3 -- 6.1. Definition of multiplicity -- 6.2. Proof of Theorem 1.3 -- Chapter 7. Localization -- 7.1. A Trivial Case -- 7.2. Localization of _{ }() -- 7.3. Localization of () -- Chapter 8. Integral Transfer -- 8.1. The Problem -- 8.2. Premier Transform -- 8.3. Description of affine space Ξ+Σ -- 8.4. Orbit in Ξ+Λ(B 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL5990824 
994 |a 92  |b IZTAP