|
|
|
|
LEADER |
00000cam a2200000Mu 4500 |
001 |
EBOOKCENTRAL_on1130905898 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr |n|---||||| |
008 |
200321s2019 riu o 000 0 eng d |
040 |
|
|
|a EBLCP
|b eng
|e pn
|c EBLCP
|d OCLCQ
|d LOA
|d OCLCO
|d OCLCF
|d K6U
|d OCLCO
|d OCLCQ
|d OCLCO
|d OCLCL
|
066 |
|
|
|c (S
|
020 |
|
|
|a 9781470454180
|
020 |
|
|
|a 1470454181
|
029 |
1 |
|
|a AU@
|b 000069466077
|
035 |
|
|
|a (OCoLC)1130905898
|
050 |
|
4 |
|a QA243
|b .W36 2019
|
082 |
0 |
4 |
|a 512/.482
|q OCoLC
|2 23/eng/20230216
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Wan, Chen.
|
245 |
1 |
2 |
|a A Local Relative Trace Formula for the Ginzburg-Rallis Model
|
260 |
|
|
|a Providence :
|b American Mathematical Society,
|c 2019.
|
300 |
|
|
|a 1 online resource (102 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Memoirs of the American Mathematical Society Ser. ;
|v v. 261
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|6 880-01
|a Cover -- Title page -- Chapter 1. Introduction and Main Result -- 1.1. The Ginzburg-Rallis model -- 1.2. Main results -- 1.3. Organization of the paper and remarks on the proofs -- 1.4. Acknowledgements -- Chapter 2. Preliminaries -- 2.1. Notation and conventions -- 2.2. Measures -- 2.3. (,)-families -- 2.4. Weighted orbital integrals -- 2.5. Shalika Germs -- Chapter 3. Quasi-Characters -- 3.1. Neighborhoods of Semisimple Elements -- 3.2. Quasi-characters of () -- 3.3. Quasi-characters of \Fg() -- 3.4. Localization -- Chapter 4. Strongly Cuspidal Functions
|
505 |
8 |
|
|a 8.5. Local Sections -- 8.6. Calculation of _{ }() -- Chapter 9. Calculation of the limit lim_{ ₂!} _{, }() -- 9.1. Convergence of a premier expression -- 9.2. Combinatorial Definition -- 9.3. Change the truncated function -- 9.4. Proof of 9.3(5) -- 9.5. Proof of 9.3(6) -- 9.6. The split case -- 9.7. Principal proposition -- Chapter 10. Proof of Theorem 5.4 and Theorem 5.7 -- 10.1. Calculation of lim_{ ₂!} _{ }(): the Lie algebra case -- 10.2. A Premier Result -- 10.3. Proof of Theorem 5.4 and Theorem 5.7 -- 10.4. The proof of (_{ }")= (_{ }")
|
505 |
8 |
|
|a Appendix A. The Proof of Lemma 9.1 and Lemma 9.11 -- A.1. The Proof of Lemma 9.1 -- A.2. The proof of Lemma 9.11 -- A.3. A final remark -- Appendix B. The Reduced Model -- B.1. The general setup -- B.2. The trilinear model -- B.3. The generalized trilinear \GL₂ models -- B.4. The middle model -- B.5. The type II models -- Bibliography -- Back Cover
|
520 |
|
|
|a Following the method developed by Waldspurger and Beuzart-Plessis in their proofs of the local Gan-Gross-Prasad conjecture, the author is able to prove the geometric side of a local relative trace formula for the Ginzburg-Rallis model. Then by applying such formula, the author proves a multiplicity formula of the Ginzburg-Rallis model for the supercuspidal representations. Using that multiplicity formula, the author proves the multiplicity one theorem for the Ginzburg-Rallis model over Vogan packets in the supercuspidal case.
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
650 |
|
0 |
|a Trace formulas.
|
650 |
|
6 |
|a Formules de trace.
|
650 |
|
7 |
|a Trace formulas
|2 fast
|
758 |
|
|
|i has work:
|a A local relative trace formula for the Ginzburg-Rallis Model: the geometric side (Text)
|1 https://id.oclc.org/worldcat/entity/E39PCFDHfv7w68qMKyw97Hv7Md
|4 https://id.oclc.org/worldcat/ontology/hasWork
|
776 |
0 |
8 |
|i Print version:
|a Wan, Chen.
|t A Local Relative Trace Formula for the Ginzburg-Rallis Model: the Geometric Side.
|d Providence : American Mathematical Society, ©2019
|z 9781470436865
|
830 |
|
0 |
|a Memoirs of the American Mathematical Society Ser.
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=5990824
|z Texto completo
|
880 |
8 |
|
|6 505-01/(S
|a 4.1. Definition and basic properties -- 4.2. The Lie algebra case -- 4.3. Localization -- Chapter 5. Statement of the Trace Formula -- 5.1. The ingredients of the integral formula -- 5.2. The Main Theorem -- 5.3. The Lie Algebra Case -- Chapter 6. Proof of Theorem 1.3 -- 6.1. Definition of multiplicity -- 6.2. Proof of Theorem 1.3 -- Chapter 7. Localization -- 7.1. A Trivial Case -- 7.2. Localization of _{ }() -- 7.3. Localization of () -- Chapter 8. Integral Transfer -- 8.1. The Problem -- 8.2. Premier Transform -- 8.3. Description of affine space Ξ+Σ -- 8.4. Orbit in Ξ+Λ(B
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL5990824
|
994 |
|
|
|a 92
|b IZTAP
|