Witten non abelian localization for equivariant K-theory, and the [Q, R]=0 theorem /
The purpose of the present memoir is two-fold. First, the authors obtain a non-abelian localization theorem when M is any even dimensional compact manifold : following an idea of E. Witten, the authors deform an elliptic symbol associated to a Clifford bundle on M with a vector field associated to a...
Clasificación: | Libro Electrónico |
---|---|
Autores principales: | , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Providence :
American Mathematical Society,
[2019].
|
Colección: | Memoirs of the American Mathematical Society.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Cover
- Title page
- Introduction
- Chapter 1. Index Theory
- 1.1. Elliptic and transversally elliptic symbols
- 1.2. Functoriality
- 1.3. Clifford bundles and Dirac operators
- Chapter 2. \K-theoretic localization
- 2.1. Deformation à la Witten of Dirac operators
- 2.2. Abelian Localization formula
- 2.3. Non abelian localization formula
- Chapter 3. "Quantization commutes with Reduction" Theorems
- 3.1. The [,]=0 theorem for Clifford modules
- 3.2. The [,]=0 theorem for almost complex manifolds
- 3.3. A slice theorem for deformed symbol
- 3.4. The Hamiltonian setting
- Chapter 4. Branching laws
- 4.1. Quasi polynomial behaviour
- 4.2. Multiplicities on a face
- Bibliography
- Back Cover