Cargando…

Witten non abelian localization for equivariant K-theory, and the [Q, R]=0 theorem /

The purpose of the present memoir is two-fold. First, the authors obtain a non-abelian localization theorem when M is any even dimensional compact manifold : following an idea of E. Witten, the authors deform an elliptic symbol associated to a Clifford bundle on M with a vector field associated to a...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Paradan, Paul-Emile (Autor), Vergne, Michèle (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Providence : American Mathematical Society, [2019].
Colección:Memoirs of the American Mathematical Society.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Cover
  • Title page
  • Introduction
  • Chapter 1. Index Theory
  • 1.1. Elliptic and transversally elliptic symbols
  • 1.2. Functoriality
  • 1.3. Clifford bundles and Dirac operators
  • Chapter 2. \K-theoretic localization
  • 2.1. Deformation à la Witten of Dirac operators
  • 2.2. Abelian Localization formula
  • 2.3. Non abelian localization formula
  • Chapter 3. "Quantization commutes with Reduction" Theorems
  • 3.1. The [,]=0 theorem for Clifford modules
  • 3.2. The [,]=0 theorem for almost complex manifolds
  • 3.3. A slice theorem for deformed symbol
  • 3.4. The Hamiltonian setting
  • Chapter 4. Branching laws
  • 4.1. Quasi polynomial behaviour
  • 4.2. Multiplicities on a face
  • Bibliography
  • Back Cover