Cargando…

Witten non abelian localization for equivariant K-theory, and the [Q, R]=0 theorem /

The purpose of the present memoir is two-fold. First, the authors obtain a non-abelian localization theorem when M is any even dimensional compact manifold : following an idea of E. Witten, the authors deform an elliptic symbol associated to a Clifford bundle on M with a vector field associated to a...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Paradan, Paul-Emile (Autor), Vergne, Michèle (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Providence : American Mathematical Society, [2019].
Colección:Memoirs of the American Mathematical Society.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mi 4500
001 EBOOKCENTRAL_on1130903384
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |n|---|||||
008 200321t20192019riu ob 000 0 eng d
040 |a EBLCP  |b eng  |e rda  |e pn  |c EBLCP  |d OCLCQ  |d YDX  |d UIU  |d OCLCF  |d OCLCQ  |d UKAHL  |d K6U  |d OCLCO  |d GZM  |d OCLCQ  |d SFB  |d OCLCO  |d QGK  |d S9M  |d OCLCL 
019 |a 1130764581  |a 1139736362  |a 1243141830  |a 1334900036 
020 |a 9781470453978  |q ebook 
020 |a 1470453975  |q ebook 
020 |z 1470435225 
020 |z 9781470435226 
020 |a 9781470453985  |q (ebook) 
020 |a 1470453983 
029 1 |a AU@  |b 000069466078 
029 1 |a AU@  |b 000069397325 
029 1 |a AU@  |b 000069667743 
035 |a (OCoLC)1130903384  |z (OCoLC)1130764581  |z (OCoLC)1139736362  |z (OCoLC)1243141830  |z (OCoLC)1334900036 
050 4 |a QA174.2  |b .P37 2019 
082 0 4 |a 512/.3  |2 23 
084 |a 58J20  |a 53D50  |a 53C27  |a 19K56  |a 57S15  |2 msc 
049 |a UAMI 
100 1 |a Paradan, Paul-Emile,  |e author. 
245 1 0 |a Witten non abelian localization for equivariant K-theory, and the [Q, R]=0 theorem /  |c Paul-Emile Paradan, Michéle Vergne. 
264 1 |a Providence :  |b American Mathematical Society,  |c [2019]. 
264 4 |c ©2019 
300 |a 1 online resource (v, 84 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Memoirs of the American Mathematical Society ;  |v v. 261 
588 0 |a Description based on print version record. 
505 0 |a Cover -- Title page -- Introduction -- Chapter 1. Index Theory -- 1.1. Elliptic and transversally elliptic symbols -- 1.2. Functoriality -- 1.3. Clifford bundles and Dirac operators -- Chapter 2. \K-theoretic localization -- 2.1. Deformation à la Witten of Dirac operators -- 2.2. Abelian Localization formula -- 2.3. Non abelian localization formula -- Chapter 3. "Quantization commutes with Reduction" Theorems -- 3.1. The [,]=0 theorem for Clifford modules -- 3.2. The [,]=0 theorem for almost complex manifolds -- 3.3. A slice theorem for deformed symbol -- 3.4. The Hamiltonian setting 
505 8 |a Chapter 4. Branching laws -- 4.1. Quasi polynomial behaviour -- 4.2. Multiplicities on a face -- Bibliography -- Back Cover 
520 |a The purpose of the present memoir is two-fold. First, the authors obtain a non-abelian localization theorem when M is any even dimensional compact manifold : following an idea of E. Witten, the authors deform an elliptic symbol associated to a Clifford bundle on M with a vector field associated to a moment map. Second, the authors use this general approach to reprove the [Q, R] = 0 theorem of Meinrenken-Sjamaar in the Hamiltonian case and obtain mild generalizations to almost complex manifolds. This non-abelian localization theorem can be used to obtain a geometric description of the multiplici. 
504 |a Includes bibliographical references (pages 69-71) 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Non-Abelian groups. 
650 0 |a K-theory. 
650 6 |a Groupes non abéliens. 
650 6 |a K-théorie. 
650 7 |a Grupos abelianos  |2 embne 
650 0 7 |a Teoría K  |2 embucm 
650 7 |a K-theory  |2 fast 
650 7 |a Non-Abelian groups  |2 fast 
700 1 |a Vergne, Michèle,  |e author. 
758 |i has work:  |a Witten non abelian localization for equivariant K-theory, and the [Q,R] = 0 theorem (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCGkjbgdH6ckk8vvVVp79wC  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Paradan, Paul-Emile.  |t Witten Non Abelian Localization for Equivariant K-Theory, and the [Q, R]=0 Theorem.  |d Providence : American Mathematical Society, ©2019  |z 9781470435226 
830 0 |a Memoirs of the American Mathematical Society. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=5990823  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH37445293 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL5990823 
938 |a YBP Library Services  |b YANK  |n 301000550 
994 |a 92  |b IZTAP