Quiver Grassmannians of Extended Dynkin Type d Part I
Let Q be a quiver of extended Dynkin type \widetilde{D}_n. In this first of two papers, the authors show that the quiver Grassmannian \mathrm{Gr}_{underline{e}}(M) has a decomposition into affine spaces for every dimension vector underline{e} and every indecomposable representation M of defect -1 an...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Otros Autores: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Providence :
American Mathematical Society,
2019.
|
Colección: | Memoirs of the American Mathematical Society Ser.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Cover
- Title page
- Introduction
- Chapter 1. Background
- 1.1. Coefficient quiver
- 1.2. Schubert decompositions
- 1.3. Representations of Schubert cells
- Chapter 2. Schubert systems
- 2.1. The complete Schubert system
- 2.2. Partial Evaluations
- 2.3. Contradictory -states
- 2.4. Definition of -states
- 2.5. The reduced Schubert system
- 2.6. Computing -states
- 2.7. Solvable -states
- 2.8. Extremal edges
- 2.9. Patchwork solutions
- 2.10. Extremal paths
- Chapter 3. First applications
- 3.1. The Kronecker quiver
- 3.2. Dynkin quivers
- Chapter 4. Schubert decompositions for type ̃ _{ }
- 4.1. Contradictory of the first and of the second kind
- 4.2. Automorphisms of the Dynkin diagram
- 4.3. Bases for some indecomposable representations
- 4.4. The main theorem
- Chapter 5. Proof of Theorem 4.1
- 5.1. Defect -1
- Appendix A. Representations for quivers of type ̃ _{ }
- A.1. Reflections and Auslander-Reiten translates
- A.2. Indecomposable and exceptional representations
- A.3. The Auslander-Reiten quiver
- A.4. The tubes
- A.5. Roots
- A.6. The defect
- Appendix B. Bases for representations of type ̃ _{ }
- B.1. Defect -1
- B.2. Defect -2
- B.3. Positive defect
- B.4. Exceptional tubes of rank 2
- B.5. Exceptional tubes of rank -2
- B.6. Homogeneous tubes
- Bibliography
- Back Cover