Cargando…

An Introduction to Probability and Stochastic Processes /

These notes were written as a result of my having taught a "nonmeasure theoretic" course in probability and stochastic processes a few times at the Weizmann Institute in Israel. I have tried to follow two principles. The first is to prove things "probabilistically" whenever possi...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Berger, Marc A. (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Springer New York, 1993.
Colección:Springer texts in statistics,
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mi 4500
001 EBOOKCENTRAL_on1120859902
003 OCoLC
005 20240329122006.0
006 m o d
007 cr nn||||mama|
008 121227s1993 nyu ob 001 0 eng d
040 |a LIP  |b eng  |e pn  |c LIP  |d OCLCO  |d EBLCP  |d OCLCQ  |d OCLCF  |d OCLCQ  |d UKAHL  |d K6U  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 958526947 
020 |a 1461227267 
020 |a 9781461227267 
024 7 |a 10.1007/978-1-4612-2726-7.  |2 doi 
035 |a (OCoLC)1120859902  |z (OCoLC)958526947 
050 4 |a QA273.A1-274.9 
050 4 |a QA274-274.9 
072 7 |a PBT.  |2 bicssc 
072 7 |a PBWL.  |2 bicssc 
072 7 |a MAT029000.  |2 bisacsh 
082 0 4 |a 519.2  |2 23 
049 |a UAMI 
100 1 |a Berger, Marc A.,  |e author  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 3 |a An Introduction to Probability and Stochastic Processes /  |c by Marc A. Berger. 
264 1 |a New York, NY :  |b Springer New York,  |c 1993. 
300 |a 1 online resource (XII, 205 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Springer Texts in Statistics,  |x 1431-875X 
500 |a Bibliographic Level Mode of Issuance: Monograph. 
504 |a Includes bibliographical references and index. 
505 0 |a I. Univariate Random Variables -- Discrete Random Variables -- Properties of Expectation -- Properties of Characteristic Functions -- Basic Distributions -- Absolutely Continuous Random Variables -- Basic Distributions -- Distribution Functions -- Computer Generation of Random Variables -- Exercises -- II. Multivariate Random Variables -- Joint Random Variables -- Conditional Expectation -- Orthogonal Projections -- Joint Normal Distribution -- Multi-Dimensional Distribution Functions -- Exercises -- III. Limit Laws -- Law of Large Numbers -- Weak Convergence -- Bochner's Theorem -- Extremes -- Extremal Distributions -- Large Deviations -- Exercises -- IV. Markov Chains--Passage Phenomena -- First Notions and Results -- Limiting Diffusions -- Branching Chains -- Queueing Chains -- Exercises -- V. Markov Chains--Stationary Distributions and Steady State -- Stationary Distributions -- Geometric Ergodicity -- Examples -- Exercises -- VI. Markov Jump Processes -- Pure Jump Processes -- Poisson Process -- Birth and Death Process -- Exercises -- VII. Ergodic Theory with an Application to Fractals -- Ergodic Theorems -- Subadditive Ergodic Theorem -- Products of Random Matrices -- Oseledec's Theorem -- Fractals -- Bibliographical Comments -- Exercises -- References -- Solutions (Sections I-V). 
520 |a These notes were written as a result of my having taught a "nonmeasure theoretic" course in probability and stochastic processes a few times at the Weizmann Institute in Israel. I have tried to follow two principles. The first is to prove things "probabilistically" whenever possible without recourse to other branches of mathematics and in a notation that is as "probabilistic" as possible. Thus, for example, the asymptotics of pn for large n, where P is a stochastic matrix, is developed in Section V by using passage probabilities and hitting times rather than, say, pulling in Perron­ Frobenius theory or spectral analysis. Similarly in Section II the joint normal distribution is studied through conditional expectation rather than quadratic forms. The second principle I have tried to follow is to only prove results in their simple forms and to try to eliminate any minor technical com­ putations from proofs, so as to expose the most important steps. Steps in proofs or derivations that involve algebra or basic calculus are not shown; only steps involving, say, the use of independence or a dominated convergence argument or an assumptjon in a theorem are displayed. For example, in proving inversion formulas for characteristic functions I omit steps involving evaluation of basic trigonometric integrals and display details only where use is made of Fubini's Theorem or the Dominated Convergence Theorem. 
546 |a English. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Distribution (Probability theory) 
650 6 |a Distribution (Théorie des probabilités) 
650 7 |a distribution (statistics-related concept)  |2 aat 
650 7 |a Distribution (Probability theory)  |2 fast 
776 0 |z 0387977848 
776 0 |z 1461276438 
830 0 |a Springer texts in statistics,  |x 1431-875X 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=3076088  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH29644114 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL3076088 
994 |a 92  |b IZTAP