Cargando…

Bioelectrochemical Interface Engineering

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Krishnaraj, R. Navanietha
Otros Autores: Sani, Rajesh K. (Rajesh Kumar)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Newark : John Wiley & Sons, Incorporated, 2019.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mu 4500
001 EBOOKCENTRAL_on1117642227
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |n|---|||||
008 190907s2019 nju o 000 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d UKMGB  |d OCLCO  |d OCLCF  |d OCLCQ  |d NTE  |d OCLCO  |d OCL  |d OCLCQ  |d OCLCA  |d OCLCO  |d OCLCL  |d REDDC  |d OCLCL 
015 |a GBB9E7503  |2 bnb 
016 7 |a 019521195  |2 Uk 
020 |a 9781119538561 
020 |a 1119538564 
020 |a 9781119538424  |q (ePub ebook) 
020 |a 1119538424 
029 1 |a AU@  |b 000066105382 
029 1 |a UKMGB  |b 019521195 
035 |a (OCoLC)1117642227 
037 |a 9781119538424  |b Wiley 
050 4 |a QP517.B53  |b .B564 2020 
082 0 4 |a 572.437  |2 23 
049 |a UAMI 
100 1 |a Krishnaraj, R. Navanietha. 
245 1 0 |a Bioelectrochemical Interface Engineering 
260 |a Newark :  |b John Wiley & Sons, Incorporated,  |c 2019. 
300 |a 1 online resource (559 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Print version record. 
505 0 |a Intro; Title Page; Copyright Page; Contents; List of Contributors; Preface; Chapter 1 Electrochemical Performance Analyses of Biofilms; 1.1 Introduction; 1.2 Electrochemical Principles; 1.2.1 Electrochemical Cells; 1.2.2 Nernst Equation and Equilibrium Constant; 1.2.3 For an Electrochemical Cell; 1.2.4 Faradic and Nonfaradic Currents; 1.2.4.1 Faradic Current; 1.2.4.2 Nonfaradaic Current; 1.3 Cyclic Voltammetry; 1.3.1 Working Principle and Instrumentation; 1.3.2 Cyclic Voltammetry and Data Interpretation; 1.3.2.1 R eversible Process; 1.3.2.2 Irreversible Process 
505 8 |a 1.3.2.3 Quasi-Reversible Electron Transfer Process1.3.2.4 Special Case; 1.3.3 Applications of CV; 1.3.3.1 Case Study 1; 1.3.3.2 Case Study 2; 1.3.3.3 Case Study 3; 1.3.4 Related Methods; 1.3.4.1 Amperometry; 1.3.4.2 Differential Pulse Voltammetry; 1.4 Electrochemical Impedance Spectroscopy; 1.4.1 Introduction and Basic Concepts; 1.4.1.1 Direct Current and Alternating Current; 1.4.1.2 Resistance and Impedance; 1.4.1.3 AC Impedance Theory; 1.4.1.4 Electrical Circuit Elements; 1.4.1.5 Graphical Representation of AC Impedance Spectroscopy Data 
505 8 |a 1.4.2 Equivalent Circuit Elements and Electrochemistry1.4.2.1 Electrolyte Resistance; 1.4.2.2 Double-layer Capacitance and Pseudocapacitance; 1.4.2.3 Charge Transfer Resistance; 1.4.2.4 Diffusion; 1.4.2.5 Constant Phase Element (CPE); 1.4.3 Equivalent Electrical Circuits Commonly Used for Biological Systems; 1.4.3.1 Equivalent Circuit Model 1; 1.4.3.2 Equivalent Circuit Model 2; 1.4.3.3 Equivalent Circuit Model 3; 1.4.3.4 Equivalent Circuit Model 4; 1.4.3.5 Equivalent Circuit Model 5; 1.4.3.6 Equivalent Circuit Model 6; 1.4.3.7 Equivalent Circuit Model 7 
505 8 |a 1.5 Electrochemical Noise (ECN) Technique1.5.1 Introduction; 1.5.2 Mathematical Background; 1.5.2.1 Shot Noise Parameters; 1.5.3 Application of ECN to Detect Microbial Corrosion; 1.5.3.1 Case Study; 1.6 Conclusion; Acknowledgments; References; Take-home Message; Test Yourself; Chapter 2 Direct Electron Transfer in Redox Enzymes and Microorganisms; 2.1 Introduction; 2.2 Wiring Enzymes to the Electrode Surface; 2.2.1 Glucose Oxidase; 2.2.2 Multicopper Oxidases; 2.2.3 Iron-containing Enzymes; 2.2.4 Cytochrome P450 in Human Liver Microsomes; 2.2.5 Iron/Copper-containing Enzymes 
505 8 |a 2.2.6 Cellobiose Dehydrogenase2.2.7 Molybdenum Enzymes; 2.2.8 Xanthine Dehydrogenase; 2.2.9 Dimethylsulfoxide Reductase; 2.2.10 Mo-Fe Protein; 2.2.11 Fructose Dehydrogenase (FDH); 2.2.12 Tungsten-containing Formate Dehydrogenase; 2.3 Wiring Microorganisms to the Electrode Surface; 2.3.1 Electroactive Bacterium and Electrodes; 2.3.2 Electricity-producing Bacteria; 2.3.3 Electron Transfer in Microbial Fuel Cells; 2.3.4 Mediated Electron Transfer; 2.3.5 Direct Electron Transfer; References; Take-home Message; Test Yourself 
500 |a Chapter 3 Electrochemical Techniques and Applications to Characterize Single- and Multicellular Electric Microbial Functions 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Bioelectrochemistry. 
650 0 |a Bioengineering. 
650 0 |a Chemical engineering. 
650 0 |a Biotechnology. 
650 6 |a Bioélectrochimie. 
650 6 |a Biotechnologie. 
650 6 |a Génie chimique. 
650 7 |a bioengineering.  |2 aat 
650 7 |a chemical engineering.  |2 aat 
650 7 |a Biotechnology  |2 fast 
650 7 |a Bioelectrochemistry  |2 fast 
650 7 |a Bioengineering  |2 fast 
650 7 |a Chemical engineering  |2 fast 
700 1 |a Sani, Rajesh K.  |q (Rajesh Kumar)  |1 https://id.oclc.org/worldcat/entity/E39PCjwHWTGCqMtD4QcjhXwWfy 
758 |i has work:  |a Bioelectrochemical interface engineering (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCG6xpBDrM64YqRxWGfhWDq  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Krishnaraj, R. Navanietha.  |t Bioelectrochemical Interface Engineering.  |d Newark : John Wiley & Sons, Incorporated, ©2019  |z 9781119538547 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=5890646  |z Texto completo 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL5890646 
994 |a 92  |b IZTAP