|
|
|
|
LEADER |
00000cam a2200000Mu 4500 |
001 |
EBOOKCENTRAL_on1117642227 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr |n|---||||| |
008 |
190907s2019 nju o 000 0 eng d |
040 |
|
|
|a EBLCP
|b eng
|e pn
|c EBLCP
|d UKMGB
|d OCLCO
|d OCLCF
|d OCLCQ
|d NTE
|d OCLCO
|d OCL
|d OCLCQ
|d OCLCA
|d OCLCO
|d OCLCL
|d REDDC
|d OCLCL
|
015 |
|
|
|a GBB9E7503
|2 bnb
|
016 |
7 |
|
|a 019521195
|2 Uk
|
020 |
|
|
|a 9781119538561
|
020 |
|
|
|a 1119538564
|
020 |
|
|
|a 9781119538424
|q (ePub ebook)
|
020 |
|
|
|a 1119538424
|
029 |
1 |
|
|a AU@
|b 000066105382
|
029 |
1 |
|
|a UKMGB
|b 019521195
|
035 |
|
|
|a (OCoLC)1117642227
|
037 |
|
|
|a 9781119538424
|b Wiley
|
050 |
|
4 |
|a QP517.B53
|b .B564 2020
|
082 |
0 |
4 |
|a 572.437
|2 23
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Krishnaraj, R. Navanietha.
|
245 |
1 |
0 |
|a Bioelectrochemical Interface Engineering
|
260 |
|
|
|a Newark :
|b John Wiley & Sons, Incorporated,
|c 2019.
|
300 |
|
|
|a 1 online resource (559 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|a Intro; Title Page; Copyright Page; Contents; List of Contributors; Preface; Chapter 1 Electrochemical Performance Analyses of Biofilms; 1.1 Introduction; 1.2 Electrochemical Principles; 1.2.1 Electrochemical Cells; 1.2.2 Nernst Equation and Equilibrium Constant; 1.2.3 For an Electrochemical Cell; 1.2.4 Faradic and Nonfaradic Currents; 1.2.4.1 Faradic Current; 1.2.4.2 Nonfaradaic Current; 1.3 Cyclic Voltammetry; 1.3.1 Working Principle and Instrumentation; 1.3.2 Cyclic Voltammetry and Data Interpretation; 1.3.2.1 R eversible Process; 1.3.2.2 Irreversible Process
|
505 |
8 |
|
|a 1.3.2.3 Quasi-Reversible Electron Transfer Process1.3.2.4 Special Case; 1.3.3 Applications of CV; 1.3.3.1 Case Study 1; 1.3.3.2 Case Study 2; 1.3.3.3 Case Study 3; 1.3.4 Related Methods; 1.3.4.1 Amperometry; 1.3.4.2 Differential Pulse Voltammetry; 1.4 Electrochemical Impedance Spectroscopy; 1.4.1 Introduction and Basic Concepts; 1.4.1.1 Direct Current and Alternating Current; 1.4.1.2 Resistance and Impedance; 1.4.1.3 AC Impedance Theory; 1.4.1.4 Electrical Circuit Elements; 1.4.1.5 Graphical Representation of AC Impedance Spectroscopy Data
|
505 |
8 |
|
|a 1.4.2 Equivalent Circuit Elements and Electrochemistry1.4.2.1 Electrolyte Resistance; 1.4.2.2 Double-layer Capacitance and Pseudocapacitance; 1.4.2.3 Charge Transfer Resistance; 1.4.2.4 Diffusion; 1.4.2.5 Constant Phase Element (CPE); 1.4.3 Equivalent Electrical Circuits Commonly Used for Biological Systems; 1.4.3.1 Equivalent Circuit Model 1; 1.4.3.2 Equivalent Circuit Model 2; 1.4.3.3 Equivalent Circuit Model 3; 1.4.3.4 Equivalent Circuit Model 4; 1.4.3.5 Equivalent Circuit Model 5; 1.4.3.6 Equivalent Circuit Model 6; 1.4.3.7 Equivalent Circuit Model 7
|
505 |
8 |
|
|a 1.5 Electrochemical Noise (ECN) Technique1.5.1 Introduction; 1.5.2 Mathematical Background; 1.5.2.1 Shot Noise Parameters; 1.5.3 Application of ECN to Detect Microbial Corrosion; 1.5.3.1 Case Study; 1.6 Conclusion; Acknowledgments; References; Take-home Message; Test Yourself; Chapter 2 Direct Electron Transfer in Redox Enzymes and Microorganisms; 2.1 Introduction; 2.2 Wiring Enzymes to the Electrode Surface; 2.2.1 Glucose Oxidase; 2.2.2 Multicopper Oxidases; 2.2.3 Iron-containing Enzymes; 2.2.4 Cytochrome P450 in Human Liver Microsomes; 2.2.5 Iron/Copper-containing Enzymes
|
505 |
8 |
|
|a 2.2.6 Cellobiose Dehydrogenase2.2.7 Molybdenum Enzymes; 2.2.8 Xanthine Dehydrogenase; 2.2.9 Dimethylsulfoxide Reductase; 2.2.10 Mo-Fe Protein; 2.2.11 Fructose Dehydrogenase (FDH); 2.2.12 Tungsten-containing Formate Dehydrogenase; 2.3 Wiring Microorganisms to the Electrode Surface; 2.3.1 Electroactive Bacterium and Electrodes; 2.3.2 Electricity-producing Bacteria; 2.3.3 Electron Transfer in Microbial Fuel Cells; 2.3.4 Mediated Electron Transfer; 2.3.5 Direct Electron Transfer; References; Take-home Message; Test Yourself
|
500 |
|
|
|a Chapter 3 Electrochemical Techniques and Applications to Characterize Single- and Multicellular Electric Microbial Functions
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
650 |
|
0 |
|a Bioelectrochemistry.
|
650 |
|
0 |
|a Bioengineering.
|
650 |
|
0 |
|a Chemical engineering.
|
650 |
|
0 |
|a Biotechnology.
|
650 |
|
6 |
|a Bioélectrochimie.
|
650 |
|
6 |
|a Biotechnologie.
|
650 |
|
6 |
|a Génie chimique.
|
650 |
|
7 |
|a bioengineering.
|2 aat
|
650 |
|
7 |
|a chemical engineering.
|2 aat
|
650 |
|
7 |
|a Biotechnology
|2 fast
|
650 |
|
7 |
|a Bioelectrochemistry
|2 fast
|
650 |
|
7 |
|a Bioengineering
|2 fast
|
650 |
|
7 |
|a Chemical engineering
|2 fast
|
700 |
1 |
|
|a Sani, Rajesh K.
|q (Rajesh Kumar)
|1 https://id.oclc.org/worldcat/entity/E39PCjwHWTGCqMtD4QcjhXwWfy
|
758 |
|
|
|i has work:
|a Bioelectrochemical interface engineering (Text)
|1 https://id.oclc.org/worldcat/entity/E39PCG6xpBDrM64YqRxWGfhWDq
|4 https://id.oclc.org/worldcat/ontology/hasWork
|
776 |
0 |
8 |
|i Print version:
|a Krishnaraj, R. Navanietha.
|t Bioelectrochemical Interface Engineering.
|d Newark : John Wiley & Sons, Incorporated, ©2019
|z 9781119538547
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=5890646
|z Texto completo
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL5890646
|
994 |
|
|
|a 92
|b IZTAP
|