Cargando…

Plastics Application Technology for Lightweight Automobiles.

The automotive sector is looking for lighter-weight materials for improved fuel economy and post-consumer recyclability to foster environmental sustainability. Engineering thermoplastics offer the ability to tailor-make components from polymers, and to design parts for enhanced performance, new func...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Sudhakar Marur
Formato: Electrónico eBook
Idioma:Inglés
Publicado: SAE ©2013
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Intro
  • Preface
  • Chapter 1 Introduction to Plastics Application Technology
  • 1.1 Introduction
  • 1.2 Application Development Cycle
  • 1.2.1 Voice of the Customer
  • 1.2.2 Benchmarking
  • 1.2.3 Material Selection
  • 1.2.4 Styling and Industrial Design
  • 1.2.5 Computer-Aided Design
  • 1.2.6 Computer-Aided Engineering
  • 1.2.7 Process Modeling
  • 1.2.8 Tooling
  • 1.2.9 Prototyping
  • 1.2.10 Secondary Operations
  • 1.2.11 Part Testing
  • 1.3 Material Selection Methodology
  • 1.3.1 Screening of Material Properties
  • 1.3.2 Conversion Processes
  • 1.3.3 Structural Requirements
  • 1.3.4 Environmental Conditions
  • 1.3.5 Assembly and Secondary Operations
  • 1.3.6 Cost Factors
  • 1.3.7 Regulations and Standards Compliance
  • 1.4 Advantages of Plastics
  • 1.4.1 Styling Freedom
  • 1.4.2 Material Property
  • 1.4.3 Performance
  • 1.4.4 Part Integration
  • 1.4.5 Weight Reduction
  • 1.4.6 System-Level Cost Reduction
  • 1.5 Key Automotive Plastics Applications
  • 1.5.1 Safety and Energy Management
  • 1.5.2 Interiors and Occupant Safety
  • 1.5.3 Glazing
  • 1.5.4 Plastic-Metal Hybrid Structures
  • 1.5.5 Headlamps
  • 1.5.6 Body Panels
  • 1.5.7 Under-the-Hood Components
  • 1.6 Summary
  • 1.7 References
  • Chapter 2 Crash and Energy Management Systems
  • 2.1 Introduction
  • 2.2 Safety as an Emerging Global Concern
  • 2.3 Regulatory and New Car Assessment Program Crash Test Requirements
  • 2.3.1 Pedestrian Impact Tests
  • 2.3.2 Low-Speed Vehicle Damageability or Bumper Structural Tests
  • 2.3.3 High-Speed Crashes for Occupant Protection
  • 2.4 Impact and Energy-Absorption Efficiency
  • 2.5 Design of Energy-Absorbing Elements
  • 2.6 Pedestrian Protection
  • 2.6.1 Vehicle Bumper Stiffness Profile
  • 2.6.2 Design of Pedestrian-Safe Bumper Systems
  • 2.6.3 Pedestrian Energy Absorbers
  • 2.6.3.1 Pedestrian Energy Absorbers-Middle Load Path
  • 2.6.3.2 SUV Energy Absorbers-Upper Load Path
  • 2.6.3.3 Undertray-Lower Load Path
  • 2.7 Countermeasures for Low-Speed Vehicle Damageability Tests
  • 2.7.1 Bumper Design Challenges
  • 2.7.2 Thermoplastic Solitary Beam Solutions
  • 2.7.3 Hybrid Plastic-Metal Bumper Beam Solutions
  • 2.8 Low-Speed Damageability and Lower-Leg Impact-Compliant Bumper System
  • 2.8.1 Conflicting Energy-Absorbing Requirements for Bumpers
  • 2.8.2 Dual-Stage Energy-Absorber Approach
  • 2.8.3 Performance Evaluation
  • 2.9 Vehicle Structural Integrity for High-Speed Crashes
  • 2.9.1 Hybrid Rail Extensions for Frontal Crashes
  • 2.9.2 Plastic Reinforced Body-in-White Structures
  • 2.9.3 A Case Study on Roof Crush Countermeasures
  • 2.10 Summary
  • 2.11 Trends
  • 2.12 References
  • Chapter 3 Interiors
  • 3.1 Introduction
  • 3.2 Instrument Panel
  • 3.2.1 Key Drivers in Instrument Panel Design
  • 3.2.2 Automotive Instrument Panel Carriers
  • 3.2.2.1 Occupant Safety: Head and Knee Impact
  • 3.2.2.2 Processing Challenges of Instrument Panel Carriers
  • 3.2.2.3 Mold-Filling Simulations of Instrument Panel Carriers