Cargando…

Moufang loops and groups with triality are essentially the same thing /

In 1925 Élie Cartan introduced the principal of triality specifically for the Lie groups of type D_4, and in 1935 Ruth Moufang initiated the study of Moufang loops. The observation of the title in 1978 was made by Stephen Doro, who was in turn motivated by the work of George Glauberman from 1968. H...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Hall, J. I. (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Providence, RI : American Mathematical Society, 2019.
Colección:Memoirs of the American Mathematical Society ; no. 1252.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBOOKCENTRAL_on1114267322
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |n|||||||||
008 190827t20192019riu ob 001 0 eng d
040 |a UAB  |b eng  |e rda  |e pn  |c UAB  |d UIU  |d EBLCP  |d OCLCF  |d OCLCQ  |d GZM  |d OCLCO  |d N$T  |d EYM  |d OCLCQ  |d YDX  |d OCLCQ  |d UKAHL  |d UX1  |d VT2  |d K6U  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO  |d S9M  |d OCLCL 
019 |a 1114533302  |a 1266286289 
020 |a 1470453215  |q (online) 
020 |a 9781470453213  |q (electronic bk.) 
020 |z 9781470436223 
020 |z 1470436221 
024 7 |a 10.1090/memo/1252  |2 doi 
029 1 |a AU@  |b 000069466814 
029 1 |a AU@  |b 000069393349 
035 |a (OCoLC)1114267322  |z (OCoLC)1114533302  |z (OCoLC)1266286289 
050 4 |a QA174.2 
082 0 4 |a 512.2  |2 23 
084 |a 20-XX  |2 msc 
049 |a UAMI 
100 1 |a Hall, J. I.,  |e author. 
245 1 0 |a Moufang loops and groups with triality are essentially the same thing /  |c J.I. Hall. 
264 1 |a Providence, RI :  |b American Mathematical Society,  |c 2019. 
264 4 |c ©2019 
300 |a 1 online resource (xiv, 186 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Memoirs of the American Mathematical Society,  |x 1947-6221 ;  |v volume 260, number 1252 
504 |a Includes bibliographical references and index. 
588 0 |a Online resource; title from PDF title page (viewed August 27, 2019). 
505 0 |a Cover; Title page; Introduction; Part 1 . Basics; Chapter 1. Category Theory; 1.1. Basics; 1.2. Category equivalence; 1.3. Terminal objects and kernel morphisms; 1.4. Pointed categories; 1.5. Rank 1 objects; 1.6. Simplicity; Chapter 2. Quasigroups and Loops; 2.1. Basics; 2.2. Autotopisms and anti-autotopisms; 2.3. Loop homomorphisms and the pointed category \aLoop; 2.4. Moufang loops and other loop varieties; 2.5. Examples; Chapter 3. Latin Square Designs; 3.1. Basics; 3.2. Central Latin square designs; 3.3. The correspondence between \Mouf and \CLSD; 3.4. Cayley tables of groups 
505 8 |a Chapter 4. Groups with Triality4.1. Basics; 4.2. Examples; 4.3. Normal subgroups in the base group and wreath products; Part 2 . Equivalence; Chapter 5. The Functor \functor{ }; 5.1. A presentation; 5.2. The functor \dthominvname; Chapter 6. Monics, Covers, and Isogeny in \catTriGrp; 6.1. A fibered product; 6.2. Monics in \Tri; 6.3. Covers and isogeny; Chapter 7. Universals and Adjoints; 7.1. Universal and adjoint groups; 7.2. Universal and adjoint categories; Chapter 8. Moufang Loops and Groups with Triality are Essentially the Same Thing; 8.1. A category equivalence; 8.2. Monics 
505 8 |a Chapter 9. Moufang Loops and Groups with Triality are Not Exactly the Same Thing9.1. \Mouf and \Tri are not equivalent; 9.2. \aMouf and \aTri are not equivalent; 9.3. \aMouf and \aATri are not equivalent; Part 3 . Related Topics; Chapter 10. The Functors \functor{ } and \functor{ }; 10.1. \thominvname and \anchor{\thominvname}; 10.2. \lthomname and \anchor{\lthomname}; Chapter 11. The Functor \functor{ }; 11.1. \gthomname and \anchor{\gthomname}; 11.2. Properties of universal groups; 11.3. Another presentation; Chapter 12. Multiplication Groups and Autotopisms 
505 8 |a 12.1. Multiplication and inner mapping groups12.2. Autotopisms; 12.3. Moufang multiplication groups, nuclei, and special autotopisms; Chapter 13. Doro's Approach; 13.1. Doro's categories; 13.2. A presentation of the base group; 13.3. Equivalent presentations; 13.4. Moufang loops; Chapter 14. Normal Structure; 14.1. Simplicity; 14.2. Short exact sequences; 14.3. Solvable Moufang loops; Chapter 15. Some Related Categories and Objects; 15.1. 3-nets; 15.2. Categories of conjugates; 15.3. Groups enveloping triality; 15.4. Tits' symmetric \calT-geometries 
505 8 |a 15.5. Latin chamber systems covered by buildingsPart 4 . Classical Triality; Chapter 16. An Introduction to Concrete Triality; 16.1. Study's triality; 16.2. Cartan's triality; 16.3. Composition algebras and the octonions; 16.4. Freudenthal's triality; 16.5. Moufang loops from octonion algebras; Chapter 17. Orthogonal Spaces and Groups; 17.1. Orthogonal geometry; 17.2. Hyperbolic orthogonal spaces; 17.3. Oriflamme geometries; 17.4. Orthogonal groups; 17.5. Chevalley groups \oD_{ }(); 17.6. Orthogonal groups in dimension 8; Chapter 18. Study's and Cartan's Triality 
520 |a In 1925 Élie Cartan introduced the principal of triality specifically for the Lie groups of type D_4, and in 1935 Ruth Moufang initiated the study of Moufang loops. The observation of the title in 1978 was made by Stephen Doro, who was in turn motivated by the work of George Glauberman from 1968. Here the author makes the statement precise in a categorical context. In fact the most obvious categories of Moufang loops and groups with triality are not equivalent, hence the need for the word ""essentially."" 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Moufang loops. 
650 0 |a Cayley numbers (Algebra) 
650 6 |a Moufang, Boucles de. 
650 6 |a Cayley, Octaves de. 
650 7 |a Álgebras de Lie  |2 embne 
650 7 |a Cayley numbers (Algebra)  |2 fast 
650 7 |a Moufang loops  |2 fast 
758 |i has work:  |a Moufang loops and groups with triality are essentially the same thing (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCFH3BkrxkGKKhYJV7gmxfy  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |t Moufang loops and groups with triality are essentially the same thing.  |d Providence, RI : American Mathematical Society, 2019  |z 1470436221  |w (OCoLC)1101658138 
830 0 |a Memoirs of the American Mathematical Society ;  |v no. 1252. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=5904557  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH37445281 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL5904557 
938 |a EBSCOhost  |b EBSC  |n 2256048 
938 |a YBP Library Services  |b YANK  |n 300839419 
994 |a 92  |b IZTAP