Cargando…

Approximation Methods for High Dimensional Simulation Results : Parameter Sensitivity Analysis and Propagation of Variations for Process Chains.

Annotation

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Steffes-lai, Daniela
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin : Logos Verlag Berlin, 2014.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Intro; 1 Introduction; 1.1 Context; 1.2 Main Focus and Structure; 2 Notation and Fundamentals; 2.1 Terminology; 2.2 Fundamentals and General Approaches; 2.2.1 Stochastics; 2.2.2 Interpolation; 2.2.3 Mapping; 2.3 Sheet Metal Forming Processes with Example; 3 Mathematical Concepts; 3.1 Design of Experiments; 3.2 Sensitivity Analysis; 3.2.1 Local Methods; 3.2.2 Global Methods; 3.3 Dimension Reduction Methods; 3.3.1 Clustering; 3.3.2 Principal Component Analysis Using Singular Value Decomposition; 3.3.3 Nonlinear Dimension Reduction Methods; 3.4 Metamodels; 3.5 Stochastic Finite Element Methods
  • 3.5.1 Stochastic Galerkin Approach3.5.2 Stochastic Collocation Method; 4 Parameter Classification Using Sensitivity Analysis; 4.1 Importance and Nonlinearity Classes; 4.1.1 Linear Importance Classes; 4.1.2 Nonlinearity Classes; 4.1.3 Total Importance Classes; 4.1.4 Application of the Parameter Classification; 4.2 Clustering Using the Nonlinearity Measure; 4.3 Efficiency; 4.4 Conclusions; 5 Processing of the Database; 5.1 Parameter Space Dimension Reduction; 5.2 Iterative Extension of the Database; 5.3 Ensemble Compression of the Database; 6 Forecast Model and Propagation of Variations
  • 6.1 Approximation of New Designs6.1.1 Radial Basis Function Metamodel Accelerated by a Singular Value Decomposition; 6.1.2 Dealing with Deleted Mesh Elements; 6.2 Computation of Statistics; 6.3 Propagation of All Relevant Scatter Information to the Next Processing Step; 6.4 Quality Control; 6.5 Efficiency; 6.6 Conclusions; 7 Benchmarks and Industrial Applications; 7.1 Numerical Comparison Between the New Methodology and a Stochastic Collocation Method; 7.1.1 Overview of the Model Problem; 7.1.2 Results of the Parameter Classification
  • 7.1.3 Comparison Between the Results of a Collocation Method and the Accelerated Metamodel Approach7.2 Forming of a Pan with Secondary Design Elements; 7.2.1 Forecast Models; 7.2.2 Computation of Statistics; 7.2.3 Conclusions; 7.3 Process Chain Forming-to-Crash; 7.3.1 ZStE340 Metal Blank of a B-Pillar; 7.3.2 Parameter Classification of the Forming Step; 7.3.3 Forecast Models; 7.3.4 Parameter Classification of the Crash Processing Step; 7.3.5 Forecast Model Taking the Forming History Into Account; 7.3.6 Conclusions; 8 Conclusions and Future Directions; Bibliography; List of Figures
  • List of TablesAcronyms; List of Symbols