Cargando…

Data Compression and Compressed Sensing in Imaging Mass Spectrometry and Sporadic Communication

Annotation

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Bartels, Andreas
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin : Logos Verlag Berlin, 2014.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mu 4500
001 EBOOKCENTRAL_on1112421877
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |n|---|||||
008 190817s2014 gw o 000 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d YDX  |d OCLCQ  |d REDDC  |d OCLCO  |d UX1  |d OCLCF  |d SFB  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL 
019 |a 1038392568  |a 1290086288 
020 |a 9783832591663 
020 |a 3832591664 
020 |z 383253850X 
020 |z 9783832538507 
029 1 |a AU@  |b 000067961761 
035 |a (OCoLC)1112421877  |z (OCoLC)1038392568  |z (OCoLC)1290086288 
050 4 |a QD96.M3  |b .B378 2014 
082 0 4 |a 543.0873  |2 23 
049 |a UAMI 
100 1 |a Bartels, Andreas. 
245 1 0 |a Data Compression and Compressed Sensing in Imaging Mass Spectrometry and Sporadic Communication 
260 |a Berlin :  |b Logos Verlag Berlin,  |c 2014. 
300 |a 1 online resource (192 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Print version record. 
505 0 |a Intro; 1 Introduction; 1.1 The big data problem; 1.2 Data compression; 1.3 What compressed sensing is about; 1.4 Scientific contributions of the thesis; 1.5 Organization of the thesis; 2 Preliminaries and concepts; 2.1 Notations; 2.2 Proximity operators and algorithms; 3 Data compression; 3.1 What is compression?; 3.2 Compression and quality measures; 3.3 Mathematical techniques; 3.3.1 `0 and `1 minimization; 3.3.2 TV minimization; 3.3.3 Nonnegative matrix factorization; 4 Compressed Sensing; 4.1 Introduction; 4.2 Uniqueness, sparseness and other properties; 4.2.1 Coherence 
505 8 |a 4.2.2 Restricted isometry property4.3 Stable `1 minimization; 4.4 Stable total variation minimization; 4.5 Coherent and redundant dictionaries; 4.6 Asymmetric restricted isometry property; 5 Imaging mass spectrometry in a nutshell; 5.1 Mass spectrometry; 5.2 Imaging mass spectrometry; 5.3 Datasets used in this thesis; 5.3.1 Rat brain; 5.3.2 Rat kidney; 6 Compression in imaging mass spectrometry; 6.1 Introduction; 6.2 Peak picking; 6.2.1 Spectral peak picking; 6.2.2 Spatial peak picking; 6.3 Denoising; 6.4 Nonnegative matrix factorization; 6.5 Conclusion 
505 8 |a 7 Compressed sensing in imaging mass spectrometry7.1 Introduction; 7.2 The compressed sensing process; 7.3 First assumption: compressible spectra; 7.4 Second assumption: sparse image gradients; 7.5 The final model; 7.6 Robust recovery; 7.7 Numerical results; 7.8 Conclusion; 8 Compressed sensing based multi-user detection; 8.1 Introduction; 8.2 Sporadic communication; 8.3 Multi-user system modelling; 8.4 The elastic-net; 8.5 The multi-user test setup; 8.6 A parameter choice rule: The C-curve criterion; 8.7 An offline approach; 8.8 Conclusion; 9 Conclusion 
520 8 |a Annotation  |b This thesis contributes to the fields of data compression and compressed sensing and their application to imaging mass spectrometry and sporadic communication. Compressed sensing is mainly built on the knowledge that most data is compressible or sparse, meaning that most of its content is redundant and not worth being measured. As a main result in this work, a compressed sensing model for imaging mass spectrometry is introduced. It combines peak-picking of the spectra and denoising of the m/z-images A robustness result for the reconstruction of compressed measured data is presented which generalizes known reconstruction guarantees. 
504 |a Includes bibliographical references. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Mass spectrometry. 
650 6 |a Spectrométrie de masse. 
650 7 |a mass spectrometry.  |2 aat 
650 7 |a Mass spectrometry  |2 fast 
758 |i has work:  |a Data Compression and Compressed Sensing in Imaging Mass Spectrometry and Sporadic Communication (Text)  |1 https://id.oclc.org/worldcat/entity/E39PD3TvR3x96r3VRpQr3jKY8C  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Bartels, Andreas.  |t Data Compression and Compressed Sensing in Imaging Mass Spectrometry and Sporadic Communication.  |d Berlin : Logos Verlag Berlin, ©2014  |z 9783832538507 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=5850430  |z Texto completo 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL5850430 
938 |a YBP Library Services  |b YANK  |n 15453939 
994 |a 92  |b IZTAP