Cargando…

Derived Manifolds from Functors of Points

Annotation

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Vogler, Franz
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin : Logos Verlag Berlin, 2013.
Colección:Augsburger Schriften Zur Mathematik, Physik und Informatik Ser.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mu 4500
001 EBOOKCENTRAL_on1112420798
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |n|---|||||
008 190817s2013 gw o 000 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d YDX  |d OCLCQ  |d REDDC  |d OCLCO  |d UX1  |d OCLCF  |d SFB  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL 
019 |a 1038472227  |a 1290087943 
020 |a 9783832591649 
020 |a 3832591648 
020 |z 9783832534059 
020 |z 3832534059 
029 1 |a AU@  |b 000068475688 
035 |a (OCoLC)1112420798  |z (OCoLC)1038472227  |z (OCoLC)1290087943 
050 4 |a QA613  |b .V645 2013 
082 0 4 |a 516.07  |2 23 
049 |a UAMI 
100 1 |a Vogler, Franz. 
245 1 0 |a Derived Manifolds from Functors of Points 
260 |a Berlin :  |b Logos Verlag Berlin,  |c 2013. 
300 |a 1 online resource (164 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Augsburger Schriften Zur Mathematik, Physik und Informatik Ser. ;  |v v. 22 
588 0 |a Print version record. 
505 0 |a Intro; 1 Introduction; 1.1 Motivation and Accomplishments; 1.2 Organisation of the Chapters; 1.3 Background and Notation; 1.4 Acknowledgements; 2 Analysis of Model Structures; 2.1 Objectwise Adjoints; 2.2 The Global Model Structures; 2.3 Simplicial Enrichment of Model Categories; 2.4 Absolute derived Functors; 2.5 Homotopy Limits as absolute derived Functors; 2.6 The left Bousfield Localization; 2.7 Sites and their Morphisms; 2.8 Homotopy Sheaves; 3 Smooth Functors as C1-Schemes; 3.1 Commutative Algebra with C1-Rings; 3.2 C1-rings and Topology; 3.3 C1-Schemes from Smooth Functors 
505 8 |a 3.4 The Big Structure Sheaf3.5 C1-ringed Spaces as C1-Schemes; 3.6 From Smooth Functors to C1-Ringed Spaces; 4 Derived Manifolds as Functors; 4.1 The Layout for Smooth Rings; 4.2 Topology for Smooth Rings; 4.3 Derived Manifolds from Smooth-Simplicial Functors; 4.4 The Global Structure Sheaf; 4.5 Derived Manifolds as Ringed Spaces; 4.6 The Functor approach to LRS 
520 8 |a Annotation  |b In this thesis a functorial approach to the category of derived manifolds is developed. We use a similar approach as Demazure and Gabriel did when they described the category of schemes as a full subcategory of the category of sheaves on the big Zariski site. Their work is further developed leading to the definition of C#-schemes and derived manifolds as certain sheaves on appropriate big sites. The new description of C#-schemes and derived manifolds via functors is compared to the previous approaches via locally ringed spaces given by D. Joyce and D. Spivak. Furthermore, it is proven that both approaches lead to equivalent categories. 
504 |a Includes bibliographical references. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Manifolds (Mathematics) 
650 6 |a Variétés (Mathématiques) 
650 7 |a Manifolds (Mathematics)  |2 fast 
758 |i has work:  |a Derived manifolds from functors of points (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCH6dycdHCh9Y3BHdV7k3Bd  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Vogler, Franz.  |t Derived Manifolds from Functors of Points.  |d Berlin : Logos Verlag Berlin, ©2013  |z 9783832534059 
830 0 |a Augsburger Schriften Zur Mathematik, Physik und Informatik Ser. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=5850398  |z Texto completo 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL5850398 
938 |a YBP Library Services  |b YANK  |n 15453937 
994 |a 92  |b IZTAP