Cargando…

Handbook of Graphene Materials.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Tiwari, Ashutosh
Otros Autores: Ozkan, Cengiz S., Ozkan, Umit S.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Newark : John Wiley & Sons, Incorporated, 2019.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBOOKCENTRAL_on1105958885
003 OCoLC
005 20240329122006.0
006 m o d
007 cr cnu||||||||
008 190621s2019 nju o 000 0 eng
040 |a AU@  |b eng  |e rda  |e pn  |c AU@  |d EBLCP  |d OCLCQ  |d REDDC  |d K6U  |d OCLCQ  |d OCLCO  |d OCLCL 
020 |a 9781119469728  |q (electronic bk.) 
020 |a 1119469724 
020 |z 9781119469711 
029 0 |a AU@  |b 000065401672 
029 1 |a AU@  |b 000065401673 
035 |a (OCoLC)1105958885 
050 4 |a TA455.G65  |b .H363 2019 
082 0 4 |a 662.9  |2 23 
049 |a UAMI 
100 1 |a Tiwari, Ashutosh. 
245 1 0 |a Handbook of Graphene Materials. 
264 1 |a Newark :  |b John Wiley & Sons, Incorporated,  |c 2019. 
264 4 |c ©2019 
300 |a 1 online resource (604 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
505 0 |a Cover -- Title Page -- Copyright Page -- Contents -- Preface -- 1 Graphene Nanomaterials in Energy and Environment Applications -- 1.1 Introduction -- 1.2 Preparations of Graphene-Based Materials -- 1.2.1 Graphene -- 1.2.2 Graphene-Based Composites -- 1.3 Applications of Graphene-Based Materials in Energy and Environment -- 1.3.1 Solar Cells -- 1.3.2 Supercapacitors -- 1.3.3 Gas Sensors -- 1.3.3.1 Graphene-Based Gas Sensors -- 1.3.3.2 GO and rGO-Based Gas Sensors -- 1.3.3.3 Modified Graphene-Based Gas Sensors -- 1.3.3.4 Graphene/Metal Oxide Hybrid-Based Gas Sensors -- 1.3.4 Catalysts for Reduction of CO2 and Degradation of Organic Pollutants -- 1.3.5 Photodetectors -- 1.4 Conclusion and Outlook -- Acknowledgments -- References -- 2 Graphene as Nanolubricant for Machining -- 2.1 Introduction -- 2.2 Tribological Testing of Graphene Nanolubricants -- 2.3 Machining Using Graphene as Nanolubricant -- 2.3.1 Application of Graphene in Milling Operations -- 2.3.2 Application of Graphene in Drilling and Tapping Operations -- 2.3.3 Application of Graphene in Turning Operations -- 2.3.4 Application of Graphene in Grinding Operations -- 2.3.5 Electro Discharge Machining Using Graphenes -- 2.4 Conclusion and Outlook -- References -- 3 Three-Dimensional Graphene Foams for Energy Storage Applications -- 3.1 Introduction -- 3.2 Fabrication, Structure, and Performance of GF -- 3.2.1 Self-Assembly Method -- 3.2.2 Template-Guide Method -- 3.2.3 3D Printing Method -- 3.2.4 Performance of GF -- 3.3 Applications of GF in Energy Storage Devices -- 3.3.1 Batteries -- 3.3.1.1 Metal-Ion Batteries -- 3.3.1.2 Metal-Sulfur Batteries -- 3.3.1.3 Metal-Air Batteries -- 3.3.2 Supercapacitors -- 3.3.2.1 Electric Double-Layer Supercapacitors -- 3.3.2.2 Pseudocapacitors -- 3.4 Conclusions and Outlook -- References. 
505 8 |a 4 Three-Dimensional Graphene Materials: Synthesis and Applications in Electrocatalysts and Electrochemical Sensors -- 4.1 Introduction -- 4.2 Synthesis of 3D Graphene-Based Materials -- 4.2.1 Chemical Self-Assembly -- 4.2.1.1 Adding Different Precursors during the 3D Graphene Preparation Procedures -- 4.2.1.2 3D Graphene as a Carbon Support -- 4.2.2 Template-Assisted Assembly by Chemical Method -- 4.2.3 Template-Assisted Assembly by CVD -- 4.2.4 3D Printing -- 4.3 Electrocatalytic Activity of 3D Graphene-Based Materials -- 4.3.1 3D Graphene-Based Materials for ORR -- 4.3.2 3D Graphene-Based Materials for MOR -- 4.3.2.1 Pt Nanoparticles Supported on 3D Graphene -- 4.3.2.2 Pt-Based Alloy Nanoparticles Supported on 3D Graphene -- 4.3.2.3 Nonplatinum Nanoparticles Supported on 3D Graphene -- 4.3.3 3D Graphene-Based Materials for EOR -- 4.3.4 3D Graphene-Based Materials for FAOR -- 4.3.5 3D Graphene-Based Materials for HER -- 4.3.5.1 3D Graphene for HER -- 4.3.5.2 3D Graphene as a Carbon Support for HER -- 4.3.6 3D Graphene-Based Materials for OER -- 4.3.7 3D Graphene-Based Materials for CO2 Reduction -- 4.4 Electrochemical Sensing Properties of 3D Graphene-Based Materials -- 4.4.1 3D Graphene-Based Materials for Heavy Metal Ions Sensing -- 4.4.2 3D Graphene-Based Materials for H2O2 Sensing -- 4.4.3 3D Graphene-Based Materials for Glucose Sensing -- 4.4.4 3D Graphene-Based Materials for Dopamine Sensing -- 4.4.5 3D Graphene-Based Materials for Urea Sensing -- 4.4.6 3D Graphene-Based Materials for Other Molecules Sensing -- 4.5 Conclusion -- Acknowledgments -- References -- 5 Graphene and Graphene-Based Hybrid Composites for Advanced Rechargeable Battery Electrodes -- 5.1 Introduction -- 5.2 Li-Ion Batteries -- 5.2.1 Graphene and Its Derivatives as Active Materials for LIB Anodes -- 5.2.2 Graphene-Based Composites for LIB Anodes. 
505 8 |a 5.2.2.1 Graphene with Alloy-Based Materials -- 5.2.2.2 Graphene with Transition Metal Oxides -- 5.2.2.3 Graphene with Titanium-Based Compounds -- 5.2.3 Graphene-Based Composites for LIB Cathodes -- 5.3 Na-Ion Batteries -- 5.3.1 Graphene and Its Derivatives as Active Materials for NIB Anodes -- 5.3.2 Graphene-Based Composites for NIB Anodes -- 5.3.2.1 Graphene with Alloy-Based Materials -- 5.3.2.2 Graphene with Metal Oxides/Sulfides -- 5.3.2.3 Graphene with Titanium-Based Compounds -- 5.3.3 Graphene-Based Composites for NIB Cathodes -- 5.4 Li-S Batteries -- 5.4.1 Sulfur with Graphene -- 5.4.2 Graphene Derivatives as an Interlayer Membrane -- 5.5 Li-Air Batteries -- 5.5.1 Graphene as an Electrocatalyst -- 5.5.2 Graphene as a Supporting Matrix -- 5.6 Summary and Perspectives -- References -- 6 Graphene-Based Materials for Advanced Lithium-Ion Batteries -- 6.1 Introduction of Lithium-Ion Batteries -- 6.2 Graphene and Its Properties -- 6.3 Synthesis Methods of Graphene for LIBs -- 6.3.1 Graphene Preparation -- 6.3.2 Exfoliation and Reduction from Graphite Oxide -- 6.3.3 CVD to Prepare Graphene -- 6.4 Graphene-Based Composites for LIBs -- 6.4.1 Graphene for LIB Anode -- 6.4.2 Graphene-Based Composites as Anode -- 6.4.3 Graphene-Based Metal Li Anode -- 6.4.4 Graphene-Based Composites as Cathode -- 6.5 Graphene-Based Composites for Li-S Batteries -- 6.5.1 Li-S Batteries -- 6.5.2 Graphene-Based Composites for Li-S Batteries -- 6.6 Graphene-Based Composites for Li-O2 Batteries -- 6.6.1 Li-O2 Batteries -- 6.6.2 Graphene and Graphene-Based Composites for Li-O2 Batteries -- 6.7 Conclusions and Outlook -- References -- 7 Graphene-Based Materials for Supercapacitors and Conductive Additives of Lithium Ion Batteries -- 7.1 Introduction -- 7.1.1 Historical Background -- 7.1.2 Principle of Supercapacitor -- 7.1.2.1 Electrochemical Double-Layer Capacitor (EDLC). 
505 8 |a 7.1.2.2 Pseudocapacitance -- 7.1.3 Carbon Materials for Supercapacitor -- 7.1.3.1 Activated Carbon -- 7.1.3.2 Carbon Nanotubes -- 7.1.3.3 Graphene -- 7.1.3.4 Other Carbon Structure -- 7.1.4 Applications -- 7.1.5 Motivation and Objective -- 7.2 Experimental Technique -- 7.2.1 Electrochemical Methods -- 7.2.1.1 Cyclic Voltammetry -- 7.2.1.2 Constant Current Charge and Discharge -- 7.2.1.3 Electrochemical Impedance Spectroscopy -- 7.2.2 Test Cell Configuration -- 7.2.3 Measurement Procedure -- 7.2.4 Summary of Test Method -- 7.3 Graphene and Carbon Nanotube Composite Materials -- 7.3.1 Introduction -- 7.3.2 Experimental -- 7.3.3 Results and Discussion -- 7.3.4 Conclusions -- 7.4 Graphene and Nanostructured MnO2 Composite Electrode -- 7.4.1 Introduction -- 7.4.2 Experimental -- 7.4.2.1 Graphene Oxide -- 7.4.2.2 Reduction of Graphene Oxide -- 7.4.2.3 In Situ MnO2 Electrodeposition -- 7.4.2.4 Fabrication of Test Cells -- 7.4.2.5 Electrochemical Measurement -- 7.4.2.6 Structural Characterization -- 7.4.3 Results and Discussion -- 7.4.3.1 Morphology of Graphene and MnO2-Coated Graphene -- 7.4.3.2 Electrochemical Behavior -- 7.4.4 Conclusions -- 7.5 Polyaniline Nanocone-Coated Graphene and Carbon Nanotube Composite Electrode -- 7.5.1 Introduction -- 7.5.2 Experimental -- 7.5.2.1 Graphene Oxide -- 7.5.2.2 Reduction of Graphene Oxide -- 7.5.2.3 Graphene/CNT/Polyaniline Composite Material -- 7.5.2.4 Electrochemical and Structural Characterization -- 7.5.3 Results and Discussion -- 7.5.4 Conclusions -- 7.6 Electrodeposition of Nanoporous Cobalt Hydroxide on Graphene and Carbon Nanotube Composites -- 7.6.1 Introduction -- 7.6.2 Experimental -- 7.6.3 Results and Discussion -- 7.6.4 Conclusions -- 7.7 Porous Graphene Sponge Additives for Lithium Ion Batteries with Excellent Rate Capability -- 7.7.1 Introduction -- 7.7.2 Methods -- 7.7.2.1 Synthesis of Magic G. 
505 8 |a 7.7.2.2 Characterization -- 7.7.2.3 Cell Fabrication -- 7.7.3 Results and Discussion -- 7.7.4 Conclusion -- 7.8 Conclusions and Perspective -- 7.8.1 Conclusions -- 7.8.1.1 Graphene and Carbon Nanotube Composite Materials -- 7.8.1.2 Graphene and Nanostructured MnO2 Composite Materials -- 7.8.1.3 Polyaniline Nanocone-Coated Graphene and Carbon Nanotube Composite Electrode -- 7.8.1.4 Electrodeposition of Nanoporous Cobalt Hydroxide on Graphene and Carbon -- 7.8.1.5 Porous Graphene Sponge Additives for Lithium Ion Batteries with Excellent Rate Capability -- 7.8.2 Future Prospects -- References -- 8 Graphene-Based Flexible Actuators, Sensors, and Supercapacitors -- 8.1 Introduction -- 8.2 IPGC Transducer for Actuators, Sensors, and Supercapacitors-Background and Basics -- 8.3 Electrochemical Actuators -- 8.3.1 Large Volume Expansion of Pristine Graphene-Based Actuators -- 8.3.2 Highly Durable Graphene Hybrid-Based Actuators -- 8.3.3 High Strain Rate Heterogeneous Doped Graphene-Based Actuators -- 8.3.4 Graphene Surface and Device Interface -- 8.4 Piezoionic Sensors -- 8.4.1 Largely Increased Response Signal of Pristine Graphene-Based Sensors -- 8.4.2 Highly Sensitive Holey-Graphene-Based Sensors -- 8.4.3 Passive Property and Space Recognition of Graphene Sensors -- 8.5 Supercapacitors -- 8.5.1 High Energy Storage Capacity of Graphene-Based Supercapacitors -- 8.5.2 Highly Flexible Graphene Hybrid-Based Supercapacitors -- 8.5.3 Unconventional Graphene-Based Supercapacitors -- 8.6 Summary and Future Development -- Acknowledgments -- References -- 9 Graphene as Catalyst Support for the Reactions in Fuel Cells -- Acronyms -- 9.1 Introduction -- 9.2 Synthesis of Graphene -- 9.3 Structural Properties and Functionalization of Graphene -- 9.4 Structural Characterizations of Graphene -- 9.5 Graphene Morphology -- 9.6 Carbon Materials as Catalyst Support. 
500 |a 9.7 Promoting Effect of Carbon Functional Groups. 
588 0 |a Publisher supplied metadata and other sources 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Graphene  |x Industrial applications. 
650 6 |a Graphène  |x Applications industrielles. 
700 1 |a Ozkan, Cengiz S. 
700 1 |a Ozkan, Umit S. 
758 |i has work:  |a Handbook of Graphene Materials (Text)  |1 https://id.oclc.org/worldcat/entity/E39PD3BjrKGqQHR3pRR3Y4FMyd  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Tiwari, Ashutosh.  |t Handbook of Graphene Materials.  |d Newark : John Wiley & Sons, Incorporated, ©2019  |z 9781119469711 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=5789380  |z Texto completo 
936 |a BATCHLOAD 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL5789380 
994 |a 92  |b IZTAP