Moufang sets and structurable division algebras /
"A Moufang set is essentially a doubly transitive permutation group such that each point stabilizer contains a normal subgroup which is regular on the remaining vertices; these regular normal subgroups are called the root groups, and they are assumed to be conjugate and to generate the whole gr...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Otros Autores: | , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Providence, RI :
American Mathematical Society,
2019
|
Colección: | Memoirs of the American Mathematical Society ;
no. 1245. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Cover; Title page; Introduction; Organization of the paper; Acknowledgments; Chapter 1. Moufang sets; 1.1. Definitions and basic properties; 1.2. Moufang sets from linear algebraic groups; 1.3. Moufang sets from Jordan algebras; 1.4. Moufang sets from skew-hermitian forms; Chapter 2. Structurable algebras; 2.1. Definitions and basic properties; 2.2. Conjugate invertibility in structurable algebras; 2.3. Examples of structurable algebras; 2.4. Construction of Lie algebras from structurable algebras; 2.5. Isotopies of structurable algebras; Chapter 3. One-invertibility for structurable algebras
- 3.1. Algebraicity of 5-graded Lie algebras3.2. One-invertibility in \A×\Ss; 3.3. One-invertibility for structurable division algebras; Chapter 4. Simple structurable algebras and simple algebraic groups; 4.1. Simple algebraic groups from simple structurable algebras; 4.2. Deducing algebraicity; 4.3. Structurable division algebras from simple algebraic groups of -rank 1; Chapter 5. Moufang sets and structurable division algebras; 5.1. Moufang sets from structurable division algebras; 5.2. Structurable division algebras from algebraic Moufang sets; Chapter 6. Examples
- 6.1. Associative algebras with involution6.2. Jordan algebras; 6.3. Hermitian structurable algebras; 6.4. Structurable algebras of skew-dimension one; 6.5. Forms of the tensor product of two composition algebras; 6.6. Classification theorem for structurable division algebras; Bibliography; Back Cover