Cargando…

Moufang sets and structurable division algebras /

"A Moufang set is essentially a doubly transitive permutation group such that each point stabilizer contains a normal subgroup which is regular on the remaining vertices; these regular normal subgroups are called the root groups, and they are assumed to be conjugate and to generate the whole gr...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Boelaert, Lien (Autor)
Otros Autores: Medts, Tom de, 1980-, Stavrova, Anastasia
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Providence, RI : American Mathematical Society, 2019
Colección:Memoirs of the American Mathematical Society ; no. 1245.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBOOKCENTRAL_on1104727673
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |n|||||||||
008 190615t20192019riua ob 000 0 eng d
010 |a  2019023420 
040 |a COD  |b eng  |e rda  |e pn  |c COD  |d COD  |d EBLCP  |d UIU  |d OCLCF  |d OCLCQ  |d UKAHL  |d VLY  |d N$T  |d YDX  |d OCLCQ  |d UX1  |d VT2  |d K6U  |d OCLCO  |d OCLCQ  |d OCLCO  |d S9M  |d OCLCL 
019 |a 1104726260  |a 1262677238 
020 |a 1470452456  |q (online) 
020 |a 9781470452452  |q (electronic bk.) 
020 |z 9781470435547  |q (print) 
020 |z 1470435543  |q (print) 
029 1 |a AU@  |b 000069468640 
029 1 |a AU@  |b 000069424605 
035 |a (OCoLC)1104727673  |z (OCoLC)1104726260  |z (OCoLC)1262677238 
050 4 |a QA247.45  |b .B645 2019 
082 0 4 |a 512.56  |2 23 
084 |a 16W10  |a 20E42  |a 17A35  |a 17B60  |a 17B45  |a 17Cxx  |a 20G15  |a 20G41  |2 msc 
049 |a UAMI 
100 1 |a Boelaert, Lien,  |e author. 
245 1 0 |a Moufang sets and structurable division algebras /  |c Lien Boelaert, Tom De Medts, Anastasia Stavrova 
264 1 |a Providence, RI :  |b American Mathematical Society,  |c 2019 
264 4 |c ©2019 
300 |a 1 online resource (v, 90 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Memoirs of the American Mathematical Society,  |x 1947-6221 ;  |v number 1245 
500 |a "May 2019 - Volume 259 - Number 1245 (second of 8 numbers)." 
504 |a Includes bibliographical references (pages 87-90). 
520 3 |a "A Moufang set is essentially a doubly transitive permutation group such that each point stabilizer contains a normal subgroup which is regular on the remaining vertices; these regular normal subgroups are called the root groups, and they are assumed to be conjugate and to generate the whole group. It has been known for some time that every Jordan division algebra gives rise to a Moufang set with abelian root groups. We extend this result by showing that every structurable division algebra gives rise to a Moufang set, and conversely, we show that every Moufang set arising from a simple linear algebraic group of relative rank one over an arbitrary field k of characteristic different from 2 and 3 arises from a structurable division algebra. We also obtain explicit formulas for the root groups, the tau-map and the Hua maps of these Moufang sets. This is particularly useful for the Moufang sets arising from exceptional linear algebraic groups."--Abstract 
588 0 |a Print version record. 
505 0 |a Cover; Title page; Introduction; Organization of the paper; Acknowledgments; Chapter 1. Moufang sets; 1.1. Definitions and basic properties; 1.2. Moufang sets from linear algebraic groups; 1.3. Moufang sets from Jordan algebras; 1.4. Moufang sets from skew-hermitian forms; Chapter 2. Structurable algebras; 2.1. Definitions and basic properties; 2.2. Conjugate invertibility in structurable algebras; 2.3. Examples of structurable algebras; 2.4. Construction of Lie algebras from structurable algebras; 2.5. Isotopies of structurable algebras; Chapter 3. One-invertibility for structurable algebras 
505 8 |a 3.1. Algebraicity of 5-graded Lie algebras3.2. One-invertibility in \A×\Ss; 3.3. One-invertibility for structurable division algebras; Chapter 4. Simple structurable algebras and simple algebraic groups; 4.1. Simple algebraic groups from simple structurable algebras; 4.2. Deducing algebraicity; 4.3. Structurable division algebras from simple algebraic groups of -rank 1; Chapter 5. Moufang sets and structurable division algebras; 5.1. Moufang sets from structurable division algebras; 5.2. Structurable division algebras from algebraic Moufang sets; Chapter 6. Examples 
505 8 |a 6.1. Associative algebras with involution6.2. Jordan algebras; 6.3. Hermitian structurable algebras; 6.4. Structurable algebras of skew-dimension one; 6.5. Forms of the tensor product of two composition algebras; 6.6. Classification theorem for structurable division algebras; Bibliography; Back Cover 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Algebra, Abstract. 
650 0 |a Jordan algebras. 
650 0 |a Lie algebras. 
650 0 |a Root systems (Algebra) 
650 6 |a Algèbre abstraite. 
650 6 |a Algèbres de Jordan. 
650 6 |a Algèbres de Lie. 
650 6 |a Systèmes de racines (Algèbre) 
650 7 |a Álgebras de Lie  |2 embne 
650 7 |a Álgebras de Jordan  |2 embne 
650 7 |a Álgebra abstracta  |2 embne 
650 7 |a Algebra, Abstract  |2 fast 
650 7 |a Jordan algebras  |2 fast 
650 7 |a Lie algebras  |2 fast 
650 7 |a Root systems (Algebra)  |2 fast 
700 1 |a Medts, Tom de,  |d 1980- 
700 1 |a Stavrova, Anastasia. 
758 |i has work:  |a Moufang sets and structurable division algebras (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCFVRr7bRrqtFTvtPPb8dw3  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Boelaert, Lien.  |t Moufang sets and structurable division algebras.  |d Providence, RI USA American Mathematical Society April 10, 2019  |z 1470435543  |w (OCoLC)1090177106 
830 0 |a Memoirs of the American Mathematical Society ;  |v no. 1245. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=5788260  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH37445265 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL5788260 
938 |a EBSCOhost  |b EBSC  |n 2158035 
938 |a YBP Library Services  |b YANK  |n 300603185 
994 |a 92  |b IZTAP