Cargando…

Model Theory of Modules, Algebras and Categories

This volume contains the proceedings of the international conference Model Theory of Modules, Algebras and Categories, held from July 28-August 2, 2017, at the Ettore Majorana Foundation and Centre for Scientific Culture in Erice, Italy. Papers contained in this volume cover recent developments in m...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Facchini, Alberto
Otros Autores: Gregory, Lorna, L'Innocente, Sonia
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Providence : American Mathematical Society, 1929.
Colección:Contemporary Mathematics Ser.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Cover; Title page; Contents; Chapter 1. Preface; On isonoetherian and isoartinian modules; 1. Introduction; 2. Isosimple modules; 3. Isonoetherian and isoartinian modules and rings; 4. Isoradical of a ring and modules generated by isosimpe modules; 5. Modules of finite I-length; Acknowledgment; References; Derived categories for Grothendieck categories of enriched functors; 1. Introduction; 2. Enriched Category Theory; 3. The closed symmetric monoidal structure for chain complexes; 4. The enriched structure; 5. Identifying chain complexes with enriched functors
  • 6. Compact generators for the derived categoryReferences; Left determined morphisms and free realisations; 1. Basic concepts; 2. The relationship between free realisations and determiners; 3. A proof of the existence of left determiners for morphisms; Acknowledgments; References; The universal abelian regular ring; 1. The group inverse; 2. Olivier's construction; 3. Definable scalars of -rings.; 4. The commutative case; 5. The lattice of pp definable subgroups; 6. The constructible Cohn spectrum; 7. The Ziegler spectrum; 8. The étale bundle of definable scalars; Acknowledgement; References
  • A characterisation of -tilting finite algebrasIntroduction; 1. Silting modules and ring epimorphisms; 2. From torsion classes to abelian subcategories; 3. From abelian subcategories to torsion classes; 4.-tilting finite algebras; References; Describing models of Th($! in adelic terms; 1. Introduction; 2. Applying the long exact sequence; 3. Conclusions; References; Valued modules on skew polynomial rings and Bézout domains; 1. Introduction; 2. Preliminaries; 3. Valued modules; 4. Valued Ore modules; 5. Valued modules over a Bézout domain; References
  • Multisorted modules and their model theory1. Introduction; 2. Multisorted modules, quiver representations and additive functors; 3. Setting up linear algebra in multisorted modules; 4. Modules in any abelian category; 5. Multisorted modules as structures; 6. Examples of multisorted modules; 7. Adding new sorts; 8. Three categories; 9. An example: ₃; 10. Adding more conditions: localisation and definable subcategories; 11. An example: ₃ again; 12. Further examples: triangulated categories; 13. Further examples: Nori motives; 14. Extending tensor product to sorts; an example; References
  • Pure projective modules over non-singular serial rings1. Introduction; 2. Basics on uniserial modules; 3. Finitely presented modules over serial rings; 4. Dimension theory for pure projective modules over serial rings; 5. The main result; References; Mittag-Leffler modules and definable subcategories; 1. Introduction; 2. Preliminaries; 3. Mittag-Leffler modules; 4. Special cases; 5. Purity; 6. Pure separation; 7. Countably generated modules; Acknowledgments; References; Intrinsic valuation entropy; 1. Introduction; 2. Definitions and preliminary facts