Cargando…

Flat rank two vector bundles on genus two curves /

"We study the moduli space of trace-free irreducible rank 2 connections over a curve of genus 2 and the forgetful map towards the moduli space of underlying vector bundles (including unstable bundles), for which we compute a natural Lagrangian rational section. As a particularity of the genus 2...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Heu, Viktoria, 1982-
Otros Autores: Loray, Frank, 1965-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Providence, RI : American Mathematical Society, [2019]
Colección:Memoirs of the American Mathematical Society ; no. 1247.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBOOKCENTRAL_on1104714418
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |n|||||||||
008 190706t20192019riua ob 000 0 eng d
010 |a  2019023419 
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d UAB  |d UIU  |d EBLCP  |d OCLCF  |d MYG  |d COD  |d GZM  |d OCLCQ  |d OCL  |d OCLCQ  |d UKAHL  |d VLY  |d N$T  |d YDX  |d OCLCQ  |d VT2  |d K6U  |d OCLCO  |d OCLCQ  |d OCLCO  |d S9M  |d OCLCL 
019 |a 1262687338 
020 |a 1470452499  |q (ebook) 
020 |a 9781470452490  |q (electronic bk.) 
020 |z 9781470435660 
020 |a 1470435667 
020 |a 9781470435660 
029 1 |a AU@  |b 000065899690 
035 |a (OCoLC)1104714418  |z (OCoLC)1262687338 
050 4 |a QA612.6  |b .H48 2019 
082 0 4 |a 514.224  |2 23 
049 |a UAMI 
100 1 |a Heu, Viktoria,  |d 1982- 
245 1 0 |a Flat rank two vector bundles on genus two curves /  |c Viktoria Hue, Frank Loray. 
264 1 |a Providence, RI :  |b American Mathematical Society,  |c [2019] 
264 4 |c ©2019 
300 |a 1 online resource (v, 103 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Memoirs of the American Mathematical Society ;  |v number 1247 
500 |a Keywords: Vector Bundles, moduli spaces, parabolic connections, Higgs bundles, Kummer surface 
500 |a "May 2019 - Volume 259 - Number 1247 (fourth of 8 numbers)." 
504 |a Includes bibliographical references. 
588 0 |a Print version record. 
505 0 |a Chapter 1. Preliminaries on connections; 1.1. Logarithmic connections; 1.2. Twists and trace; 1.3. Projective connections and Riccati foliations; 1.4. Parabolic structures; 1.5. Elementary transformations; 1.6. Stability and moduli spaces; Chapter 2. Hyperelliptic correspondence; 2.1. Topological considerations; 2.2. A direct algebraic approach; Chapter 3. Flat vector bundles over; 3.1. Flatness criterion; 3.2. Semi-stable bundles and the Narasimhan-Ramanan theorem; 3.3. Semi-stable decomposable bundles; 3.4. Semi-stable indecomposable bundles -- 3.5. Unstable and indecomposable: the 6+10 Gunning bundles3.6. Computation of a system of coordinates; Chapter 4. Anticanonical subbundles; 4.1. Tyurin subbundles; 4.2. Extensions of the canonical bundle; 4.3. Tyurin parametrization; Chapter 5. Flat parabolic vector bundles over the quotient /; 5.1. Flatness criterion; 5.2. Dictionary: how special bundles on occur as special bundles on /; 5.3. Semi-stable bundles and projective charts; 5.4. Moving weights and wall-crossing phenomena; 5.5. Galois and Geiser involutions; 5.6. Summary: the moduli stack \BUN( ) -- Chapter 6. The moduli stack ℌ ( ) and the Hitchin fibration6.1. A Poincaré family on the 2-fold cover \HIGGS( / ); 6.2. The Hitchin fibration; 6.3. Explicit Hitchin Hamiltonians on \HIGGS( / ); 6.4. Explicit Hitchin Hamiltonians on \HIGGS( ); 6.5. Comparison to existing formulae; Chapter 7. The moduli stack ℭ ( ); 7.1. An explicit atlas; 7.2. The apparent map on \CON( / ); 7.3. A Lagrangian section of \CON( )→\BUN( ); Chapter 8. Application to isomonodromic deformations; 8.1. Darboux coordinates; 8.2. Hamiltonian system; 8.3. Transversality to the locus of Gunning bundles -- 8.4. Projective structures and Hejhal's theorem 
520 |a "We study the moduli space of trace-free irreducible rank 2 connections over a curve of genus 2 and the forgetful map towards the moduli space of underlying vector bundles (including unstable bundles), for which we compute a natural Lagrangian rational section. As a particularity of the genus 2 case, connections as above are invariant under the hyperelliptic involution: they descend as rank 2 logarithmic connections over the Riemann sphere. We establish explicit links between the well-known moduli space of the underlying parabolic bundles with the classical approaches by Narasimhan-Ramanan, Tyurin and Bertram. This allows us to explain a certain number of geometric phenomena in the considered moduli spaces such as the classical (16, 6)-configuration of the Kummer surface. We also recover a Poincarape family due to Bolognesi on a degree 2 cover of the Narasimhan-Ramanan moduli space. We explicitly compute the Hitchin integrable system on the moduli space of Higgs bundles and compare the Hitchin Hamiltonians with those found by van Geemen-Previato. We explicitly describe the isomonodromic foliation in the moduli space of vector bundles with sl2-connection over curves of genus 2 and prove the transversality of the induced flow with the locus of unstable bundles"--  |c Provided by publisher 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Vector bundles. 
650 0 |a Moduli theory. 
650 0 |a Differential equations, Parabolic. 
650 0 |a Arithmetical algebraic geometry. 
650 6 |a Fibrés vectoriels. 
650 6 |a Théorie des modules. 
650 6 |a Équations différentielles paraboliques. 
650 6 |a Géométrie algébrique arithmétique. 
650 7 |a Ecuaciones diferenciales  |2 embne 
650 0 7 |a Módulos, Teoría de  |2 embucm 
650 0 7 |a Geometría algebraica aritmética  |2 embucm 
650 7 |a Moduli theory  |2 fast 
650 7 |a Differential equations, Parabolic  |2 fast 
650 7 |a Arithmetical algebraic geometry  |2 fast 
650 7 |a Vector bundles  |2 fast 
700 1 |a Loray, Frank,  |d 1965- 
758 |i has work:  |a Flat rank two vector bundles on genus two curves (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCGff46crrcqFryfTqWX6JC  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Heu, Viktoria.  |t Flat Rank Two Vector Bundles on Genus Two Curves.  |d Providence : American Mathematical Society, ©2019  |z 9781470435660 
830 0 |a Memoirs of the American Mathematical Society ;  |v no. 1247. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=5788253  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH37445267 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL5788253 
938 |a EBSCOhost  |b EBSC  |n 2158037 
938 |a YBP Library Services  |b YANK  |n 300603187 
994 |a 92  |b IZTAP