Automorphisms of two-generator free groups and spaces of isometric actions on the byperbolic plane /
The automorphisms of a two-generator free group \mathsf F_2 acting on the space of orientation-preserving isometric actions of \mathsf F_2 on hyperbolic 3-space defines a dynamical system. Those actions which preserve a hyperbolic plane but not an orientation on that plane is an invariant subsystem,...
Clasificación: | Libro Electrónico |
---|---|
Autores principales: | , , , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Providence, RI :
American Mathematical Society,
[2019]
|
Colección: | Memoirs of the American Mathematical Society ;
no. 1249. |
Temas: | |
Acceso en línea: | Texto completo |
Sumario: | The automorphisms of a two-generator free group \mathsf F_2 acting on the space of orientation-preserving isometric actions of \mathsf F_2 on hyperbolic 3-space defines a dynamical system. Those actions which preserve a hyperbolic plane but not an orientation on that plane is an invariant subsystem, which reduces to an action of a group \Gamma on \mathbb R ^3 by polynomial automorphisms preserving the cubic polynomial \kappa _\Phi (x, y, z) := -x^{2} -y^{2} + z^{2} + x y z -2 and an area form on the level surfaces \kappa _{\Phi}^{-1}(k). |
---|---|
Notas: | Keywords: character variety, free group, outer automorphism group, hyperbolic surface, nonorientable surface, hyperbolic surface, conical singularity, Nielsen transformation, ergodic equivalence relation, Fricke space, mapping class group, tree, Markoff map "May 2019, volume 259, number 1249 (sixth of 8 numbers)." |
Descripción Física: | 1 online resource (92 pages) : illustrations |
Bibliografía: | Includes bibliographical references (pages 77-78). |
ISBN: | 1470452537 1470436140 9781470436148 9781470452537 |