Spinors on singular spaces and the topology of causal fermion systems /
"Causal fermion systems and Riemannian fermion systems are proposed as aframework for describing non-smooth geometries. In particular, this framework pro-vides a setting for spinors on singular spaces. The underlying topological structuresare introduced and analyzed. The connection to the spin...
Clasificación: | Libro Electrónico |
---|---|
Autores principales: | , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Providence, RI :
American Mathematical Society,
2019.
|
Colección: | Memoirs of the American Mathematical Society ;
no. 1251. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- 1. Introduction
- 2. Basic Definitions and Simple Examples
- 3. Topological Structures
- 4. Topological Spinor Bundles
- 5. Further Examples
- 6. Tangent Cone Measures and the Tangential Clifford Section
- 7. The Topology of Discrete and Singular Fermion Systems
- 8. Basic Examples
- 9. Spinors on Singular Spaces
- Chapter 1. Introduction
- Chapter 2. Basic Definitions and Simple Examples
- Chapter 3. Topological Structures
- 3.1. A Sheaf
- 3.2. A Topological Vector Bundle
- 3.3. A Bundle over a Topological Manifold
- 3.4. A Bundle over a Differentiable Manifold
- Chapter 4. Topological Spinor Bundles
- 4.1. Clifford Sections
- 4.2. Topological Obstructions
- 4.3. The Spin Group
- 4.4. Construction of Bundle Charts
- 4.5. Spin Structures
- Chapter 5. Further Examples
- 5.1. Compact Riemannian Spin Manifolds
- 5.2. Almost-Complex Structures on Riemannian Manifolds
- 5.3. Complex Structures on Riemannian Manifolds5.4. Kähler Structures
- Chapter 6. Tangent Cone Measures and the Tangential Clifford Section
- 6.1. The Tangent Cone Measure
- 6.2. Construction of a Tangential Clifford Section
- 6.3. Construction of a Spin Structure
- Chapter 7. The Topology of Discrete and Singular Fermion Systems
- Chapter 8. Basic Examples
- 8.1. The Euclidean Plane
- 8.2. Two-Dimensional Minkowski Space
- 8.3. The Euclidean Plane with Chiral Asymmetry
- 8.4. The Spin Structure of the Euclidean Plane with Chiral Asymmetry
- 8.5. The Spin Structure of Two-Dimensional Minkowski Space
- Chapter 9. Spinors on Singular Spaces9.1. Singularities of the Conformal Factor
- 9.2. Genuine Singularities of the Curvature Tensor
- 9.3. The Curvature Singularity of Schwarzschild Space-Time
- 9.4. A Lattice System with Non-Trivial Topology