Cargando…

Time Changes of the Brownian Motion.

In this paper, time changes of the Brownian motions on generalized Sierpinski carpets including n-dimensional cube [0, 1]^n are studied. Intuitively time change corresponds to alteration to density of the medium where the heat flows. In case of the Brownian motion on [0, 1]^n, density of the medium...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Kigami, Jun
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Providence : American Mathematical Society, 2019.
Colección:Memoirs of the American Mathematical Society ; no. 1250.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mu 4500
001 EBOOKCENTRAL_on1104702570
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |n|||||||||
008 190706s2019 riu o 000 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d UIU  |d EBLCP  |d N$T  |d OCLCF  |d OCLCQ  |d K6U  |d OCLCO  |d OCLCQ  |d OCLCO  |d S9M  |d OCLCL 
020 |a 1470452553 
020 |a 9781470452551  |q (electronic bk.) 
020 |z 9781470436209 
029 1 |a CHNEW  |b 001059169 
029 1 |a CHVBK  |b 56975772X 
035 |a (OCoLC)1104702570 
050 4 |a QA274.75 
082 0 4 |a 519.2/33  |2 23 
049 |a UAMI 
100 1 |a Kigami, Jun. 
245 1 0 |a Time Changes of the Brownian Motion. 
260 |a Providence :  |b American Mathematical Society,  |c 2019. 
300 |a 1 online resource (130 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Memoirs of the American Mathematical Society ;  |v no. 1250 
588 0 |a Print version record. 
505 0 |a Cover; Title page; Chapter 1. Introduction; Chapter 2. Generalized Sierpinski carpets; Chapter 3. Standing assumptions and notations; Chapter 4. Gauge function; Chapter 5. The Brownian motion and the Green function; Chapter 6. Time change of the Brownian motion; Chapter 7. Scaling of the Green function; Chapter 8. Resolvents; Chapter 9. Poincaré inequality; Chapter 10. Heat kernel, existence and continuity; Chapter 11. Measures having weak exponential decay; Chapter 12. Protodistance and diagonal lower estimateof heat kernel; Chapter 13. Proof of Theorem 1.1 
505 8 |a Chapter 14. Random measures having weak exponential decayChapter 15. Volume doubling measure and sub-Gaussian heat kernel estimate; Chapter 16. Examples; Chapter 17. Construction of metrics from gauge function; Chapter 18. Metrics and quasimetrics; Chapter 19. Protodistance and the volume doubling property; Chapter 20. Upper estimate of _{ }(,); Chapter 21. Lower estimate of _{ }(,); Chapter 22. Non existence of super-Gaussian heat kernel behavior; Bibliography; List of Notations; Index; Back Cover 
520 |a In this paper, time changes of the Brownian motions on generalized Sierpinski carpets including n-dimensional cube [0, 1]^n are studied. Intuitively time change corresponds to alteration to density of the medium where the heat flows. In case of the Brownian motion on [0, 1]^n, density of the medium is homogeneous and represented by the Lebesgue measure. The author's study includes densities which are singular to the homogeneous one. He establishes a rich class of measures called measures having weak exponential decay. This class contains measures which are singular to the homogeneous one such. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Brownian motion processes. 
650 0 |a Mathematical analysis. 
650 0 |a Heat  |x Transmission. 
650 6 |a Processus de mouvement brownien. 
650 6 |a Analyse mathématique. 
650 6 |a Chaleur  |x Transmission. 
650 7 |a heat transmission.  |2 aat 
650 7 |a Análisis matemático  |2 embne 
650 0 7 |a Movimientos brownianos  |2 embucm 
650 0 7 |a Calor-Transmisión  |2 embucm 
650 7 |a Brownian motion processes  |2 fast 
650 7 |a Heat  |x Transmission  |2 fast 
650 7 |a Mathematical analysis  |2 fast 
758 |i has work:  |a Time changes of the Brownian motion (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCFvvMDhG9xrrqcfgQTtDRq  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Kigami, Jun.  |t Time Changes of the Brownian Motion: Poincaré Inequality, Heat Kernel Estimate and Protodistance.  |d Providence : American Mathematical Society, ©2019  |z 9781470436209 
830 0 |a Memoirs of the American Mathematical Society ;  |v no. 1250. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=5788261  |z Texto completo 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL5788261 
938 |a EBSCOhost  |b EBSC  |n 2158040 
994 |a 92  |b IZTAP