Cargando…

Self-learning and adaptive algorithms for business applications : a guide to adaptive neuro-fuzzy systems for fuzzy clustering under uncertainty conditions /

In this guide designed for researchers and students of computer science, readers will find a resource for how to apply methods that work on real-life problems to their challenging applications, and a go-to work that makes fuzzy clustering issues and aspects clear.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Hu, Zhengbing (Autor), Bodyanskiy, Yevgeniy V. (Autor), Tyshchenko, Oleksii (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Bingley, UK : Emerald Publishing, 2019.
Edición:First edition.
Colección:Emerald points.
Temas:
Acceso en línea:Texto completo
Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBOOKCENTRAL_on1104209023
003 OCoLC
005 20240329122006.0
006 m o d
007 cr cnu|||unuuu
008 190611s2019 enk ob 000 0 eng d
040 |a N$T  |b eng  |e rda  |e pn  |c N$T  |d N$T  |d EBLCP  |d OCLCF  |d UKMGB  |d UKAHL  |d OTZ  |d OCLCQ  |d SFB  |d OCLCQ  |d K6U  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCQ  |d PSYSI  |d OCLCQ  |d OCLCO  |d OCLCL 
015 |a GBB964754  |2 bnb 
016 7 |a 019349566  |2 Uk 
020 |a 9781838671716  |q (electronic bk.) 
020 |a 1838671714  |q (electronic bk.) 
020 |a 9781838671730  |q (ePub ebook) 
020 |a 1838671730 
020 |z 9781838671747 
029 1 |a AU@  |b 000067268534 
029 1 |a CHNEW  |b 001059161 
029 1 |a CHVBK  |b 569757649 
029 1 |a UKMGB  |b 019349566 
035 |a (OCoLC)1104209023 
037 |a 9781838671730  |b Emerald Publishing 
050 4 |a HD30.2 
072 7 |a BUS  |x 082000  |2 bisacsh 
072 7 |a BUS  |x 041000  |2 bisacsh 
072 7 |a BUS  |x 042000  |2 bisacsh 
072 7 |a BUS  |x 085000  |2 bisacsh 
080 |a 658 
082 0 4 |a 658.4038  |2 23 
049 |a UAMI 
100 1 |a Hu, Zhengbing,  |e author. 
245 1 0 |a Self-learning and adaptive algorithms for business applications :  |b a guide to adaptive neuro-fuzzy systems for fuzzy clustering under uncertainty conditions /  |c by Zhengbing Hu, Yevgeniy V. Bodyanskiy, Oleksii K. Tyshchenko. 
250 |a First edition. 
264 1 |a Bingley, UK :  |b Emerald Publishing,  |c 2019. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Emerald points 
504 |a Includes bibliographical references. 
588 |a Online resource; title from PDF title page (EBSCO, viewed June 13, 2019). 
505 0 |a Front Cover; Self-Learning and Adaptive Algorithms for Business Applications; Copyright Page; Contents; Acknowledgment; Introduction; Chapter 1 Review of the Problem Area; 1.1. Learning and Self-learning Procedures; 1.2. Clustering; 1.2.1. Clustering Methods; 1.3. Fuzzy Sets and Fuzzy Logic; 1.3.1. Fuzzy Inference Systems and Fuzzy Control; 1.3.2. Type-2 Fuzzy Logic; 1.3.2.1. Interval Type-2 Fuzzy Sets; 1.3.2.2. Model Reduction; 1.3.2.3. Type-2 Fuzzy Clustering; 1.4. Neural Networks and Their Learning Methods; 1.4.1. Artificial Neural Networks; 1.4.2. Neural Networks' Learning 
505 8 |a 1.4.3. Recurrent Neural Networks1.5. Neuro-fuzzy Systems; Chapter 2 Adaptive Methods of Fuzzy Clustering; 2.1. An Objective Function for Fuzzy Clustering; 2.2. Optimization of the Objective Function; 2.3. A Linear Variable Fuzzifier; 2.3.1. Adaptive Fuzzy Clustering with a Variable Fuzzifier; 2.3.2. Possibilistic Fuzzy Clustering with a Variable Fuzzifier; 2.3.3. A Suppression Procedure for Fuzzy Clustering; 2.4. Methods Based on the Gustafson-Kessel Procedure; 2.4.1. The Basic Gustafson-Kessel Method; 2.4.2. A Possibilistic Version of the Gustafson-Kessel Method 
505 8 |a 2.4.3. Adaptive Versions of the Gustafson-Kessel Algorithm2.5. A Robust Fuzzy Clustering Method Based on the Cauchy Criterion; 2.5.1. The Probabilistic Approach; 2.5.2. The Possibilistic Approach; Chapter 3 Kohonen Maps and Their Ensembles for Fuzzy Clustering Tasks; 3.1. The Competitive Learning; 3.2. Kohonen Neural Networks; 3.3. Modifications of Kohonen Self-organizing Maps; 3.4. Ensembles and Their Learning Methods; 3.4.1. Reasons for Using Ensembles; 3.4.2. Basic Notions of the Theory of Collective Output Systems; 3.4.2.1. Confidence; 3.4.2.2. Diversification 
505 8 |a 3.4.2.3. Incremental Ensembles' Learning3.4.3. Methods for Building Ensembles; 3.4.3.1. An Algebraic Combination; 3.4.3.2. A Weighted Combination; 3.4.3.3. Complex Systems of the Collective Output; 3.5. Ensembles of Neuro-fuzzy Kohonen Networks; 3.6. Fuzzy Type-2 Clustering Using Ensembles of Modified Neuro-fuzzy Kohonen Networks; Chapter 4 Simulation Results and Solutions for Practical Tasks; 4.1. Simulation of the Adaptive Neuro-fuzzy Kohonen Network with a Variable Fuzzifier; 4.1.1. Comparative Efficiency; 4.1.2. The Fuzzifier's Influence; 4.1.3. Influence of the Suppression Parameter 
505 8 |a 4.2. Simulation of Adaptive Versions the Gustafson-Kessel Algorithm4.3. Simulation of the Robust Clustering Method Based on the Cauchy Criterion; 4.4. Solving the Task of Automated Cataloging of Illustrative Materials; Conclusion; References 
520 |a In this guide designed for researchers and students of computer science, readers will find a resource for how to apply methods that work on real-life problems to their challenging applications, and a go-to work that makes fuzzy clustering issues and aspects clear. 
590 |a Emerald Insight  |b Emerald All Book Titles 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Electronic data processing. 
650 0 |a Business  |x Data processing. 
650 0 |a Fuzzy systems. 
650 6 |a Gestion  |x Informatique. 
650 6 |a Systèmes flous. 
650 7 |a Neural networks & fuzzy systems.  |2 bicssc 
650 7 |a BUSINESS & ECONOMICS  |x Industrial Management.  |2 bisacsh 
650 7 |a BUSINESS & ECONOMICS  |x Management.  |2 bisacsh 
650 7 |a BUSINESS & ECONOMICS  |x Management Science.  |2 bisacsh 
650 7 |a BUSINESS & ECONOMICS  |x Organizational Behavior.  |2 bisacsh 
650 7 |a Business  |x Data processing  |2 fast 
650 7 |a Electronic data processing  |2 fast 
650 7 |a Fuzzy systems  |2 fast 
700 1 |a Bodyanskiy, Yevgeniy V.,  |e author 
700 1 |a Tyshchenko, Oleksii,  |e author. 
758 |i has work:  |a Self-learning and adaptive algorithms for business applications (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCFTv6ppQ4kHBCXGPcDkfYP  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version :  |z 9781838671747 
830 0 |a Emerald points. 
856 4 0 |u https://www.emerald.com/insight/publication/doi/10.1108/9781838671716  |z Texto completo 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=5787820  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH35976434 
938 |a Askews and Holts Library Services  |b ASKH  |n BDZ0039757353 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL5787820 
938 |a EBSCOhost  |b EBSC  |n 2040570 
994 |a 92  |b IZTAP