Cargando…

Applied Supervised Learning with R : Use Machine Learning Libraries of R to Build Models That Solve Business Problems and Predict Future Trends.

Applied Supervised Learning with R will make you a pro at identifying your business problem, selecting the best supervised machine learning algorithm to solve it, and fine-tuning your model to exactly deliver your needs without overfitting itself.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Ramasubramanian, Karthik
Otros Autores: Moolayil, Jojo
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Birmingham : Packt Publishing, Limited, 2019.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mi 4500
001 EBOOKCENTRAL_on1104084485
003 OCoLC
005 20240329122006.0
006 m o d
007 cr cnu---unuuu
008 190615s2019 enk o 000 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d N$T  |d OCLCF  |d OCLCQ  |d YDX  |d UKAHL  |d OCLCQ  |d NLW  |d OCLCO  |d UKMGB  |d K6U  |d OCLCQ  |d OCLCO  |d TMA  |d OCLCL  |d OCLCQ 
015 |a GBC221807  |2 bnb 
016 7 |a 019436495  |2 Uk 
019 |a 1103985351 
020 |a 1838557164 
020 |a 9781838557164  |q (electronic bk.) 
020 |z 9781838556334  |q print 
029 1 |a AU@  |b 000068857575 
029 1 |a AU@  |b 000065541125 
029 1 |a UKMGB  |b 019436495 
035 |a (OCoLC)1104084485  |z (OCoLC)1103985351 
037 |a 9781838557164  |b Packt Publishing 
050 4 |a Q325.5 
072 7 |a COM  |x 000000  |2 bisacsh 
082 0 4 |a 006.31  |2 23 
049 |a UAMI 
100 1 |a Ramasubramanian, Karthik. 
245 1 0 |a Applied Supervised Learning with R :  |b Use Machine Learning Libraries of R to Build Models That Solve Business Problems and Predict Future Trends. 
260 |a Birmingham :  |b Packt Publishing, Limited,  |c 2019. 
300 |a 1 online resource (503 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Print version record. 
505 0 |a Cover; FM; Table of Contents; Preface; Chapter 1: R for Advanced Analytics; Introduction; Working with Real-World Datasets; Exercise 1: Using the unzip Method for Unzipping a Downloaded File; Reading Data from Various Data Formats; CSV Files; Exercise 2: Reading a CSV File and Summarizing its Column; JSON; Exercise 3: Reading a JSON file and Storing the Data in DataFrame; Text; Exercise 4: Reading a CSV File with Text Column and Storing the Data in VCorpus; Write R Markdown Files for Code Reproducibility; Activity 1: Create an R Markdown File to Read a CSV File and Write a Summary of Data 
505 8 |a Data Structures in RVector; Matrix; Exercise 5: Performing Transformation on the Data to Make it Available for the Analysis; List; Exercise 6: Using the List Method for Storing Integers and Characters Together; Activity 2: Create a List of Two Matrices and Access the Values; DataFrame; Exercise 7: Performing Integrity Checks Using DataFrame; Data Table; Exercise 8: Exploring the File Read Operation; Data Processing and Transformation; cbind; Exercise 9: Exploring the cbind Function; rbind; Exercise 10: Exploring the rbind Function; The merge Function; Exercise 11: Exploring the merge Function 
505 8 |a Inner JoinLeft Join; Right Join; Full Join; The reshape Function; Exercise 12: Exploring the reshape Function; The aggregate Function; The Apply Family of Functions; The apply Function; Exercise 13: Implementing the apply Function; The lapply Function; Exercise 14: Implementing the lapply Function; The sapply Function; The tapply Function; Useful Packages; The dplyr Package; Exercise 15: Implementing the dplyr Package; The tidyr Package; Exercise 16: Implementing the tidyr Package 
505 8 |a Activity 3: Create a DataFrame with Five Summary Statistics for All Numeric Variables from Bank Data Using dplyr and tidyrThe plyr Package; Exercise 17: Exploring the plyr Package; The caret Package; Data Visualization; Scatterplot; Scatter Plot between Age and Balance split by Marital Status; Line Charts; Histogram; Boxplot; Summary; Chapter 2: Exploratory Analysis of Data; Introduction; Defining the Problem Statement; Problem-Designing Artifacts; Understanding the Science Behind EDA; Exploratory Data Analysis; Exercise 18: Studying the Data Dimensions; Univariate Analysis 
505 8 |a Exploring Numeric/Continuous FeaturesExercise 19: Visualizing Data Using a Box Plot; Exercise 20: Visualizing Data Using a Histogram; Exercise 21: Visualizing Data Using a Density Plot; Exercise 22: Visualizing Multiple Variables Using a Histogram; Activity 4: Plotting Multiple Density Plots and Boxplots; Exercise 23: Plotting a Histogram for the nr.employed, euribor3m, cons.conf.idx, and duration Variables; Exploring Categorical Features; Exercise 24: Exploring Categorical Features; Exercise 25: Exploring Categorical Features Using a Bar Chart 
500 |a Exercise 26: Exploring Categorical Features using Pie Chart 
520 |a Applied Supervised Learning with R will make you a pro at identifying your business problem, selecting the best supervised machine learning algorithm to solve it, and fine-tuning your model to exactly deliver your needs without overfitting itself. 
504 |a Includes bibliographical references. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Machine learning. 
650 0 |a R (Computer program language) 
650 6 |a Apprentissage automatique. 
650 6 |a R (Langage de programmation) 
650 7 |a Artificial intelligence.  |2 bicssc 
650 7 |a Neural networks & fuzzy systems.  |2 bicssc 
650 7 |a Data capture & analysis.  |2 bicssc 
650 7 |a COMPUTERS  |x General.  |2 bisacsh 
650 7 |a Machine learning  |2 fast 
650 7 |a R (Computer program language)  |2 fast 
700 1 |a Moolayil, Jojo. 
758 |i has work:  |a Applied supervised learning with R (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCYyVvMXVjM8qfTqFgGjw83  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Ramasubramanian, Karthik.  |t Applied Supervised Learning with R : Use Machine Learning Libraries of R to Build Models That Solve Business Problems and Predict Future Trends.  |d Birmingham : Packt Publishing, Limited, ©2019  |z 9781838556334 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=5784240  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH36368510 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL5784240 
938 |a EBSCOhost  |b EBSC  |n 2153726 
938 |a YBP Library Services  |b YANK  |n 300576902 
994 |a 92  |b IZTAP