Cargando…

Caffe2 Quick Start Guide : Modular and Scalable Deep Learning Made Easy.

Caffe2 by Facebook is a popular and relatively lightweight deep learning framework. Caffe2 is known for speed, accuracy and high efficiency in training neural networks. Caffe2 is widely used in mobile apps. This book is a fast paced guide that will teach you how to train and deploy deep learning mod...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Nanjappa, Ashwin
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Birmingham : Packt Publishing, Limited, 2019.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mi 4500
001 EBOOKCENTRAL_on1104082966
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |n|---|||||
008 190720s2019 enk o 000 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d OCLCQ  |d CHVBK  |d OCLCO  |d YDX  |d OCLCF  |d UKAHL  |d OCLCQ  |d VLY  |d N$T  |d NLW  |d OCLCO  |d UKMGB  |d K6U  |d OCLCQ  |d OCLCO 
015 |a GBC221798  |2 bnb 
016 7 |a 019436482  |2 Uk 
019 |a 1104048338 
020 |a 1789138264 
020 |a 9781789138269  |q (electronic bk.) 
020 |z 9781789137750  |q print 
029 1 |a CHNEW  |b 001059113 
029 1 |a CHVBK  |b 569757169 
029 1 |a AU@  |b 000070676479 
029 1 |a UKMGB  |b 019436482 
035 |a (OCoLC)1104082966  |z (OCoLC)1104048338 
037 |a 9781789138269  |b Packt Publishing 
050 4 |a LB1060  |b .N365 2019 
082 0 4 |a 370.1523  |2 23 
049 |a UAMI 
100 1 |a Nanjappa, Ashwin. 
245 1 0 |a Caffe2 Quick Start Guide :  |b Modular and Scalable Deep Learning Made Easy. 
260 |a Birmingham :  |b Packt Publishing, Limited,  |c 2019. 
300 |a 1 online resource (127 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Print version record. 
505 0 |a Cover; Title Page; Copyright and Credits; About Packt; Contributors; Table of Contents; Preface; Chapter 1: Introduction and Installation; Introduction to deep learning; AI; ML; Deep learning; Introduction to Caffe2; Caffe2 and PyTorch; Hardware requirements; Software requirements; Building and installing Caffe2; Installing dependencies; Installing acceleration libraries; Building Caffe2; Installing Caffe2; Testing the Caffe2 Python API; Testing the Caffe2 C++ API; Summary; Chapter 2: Composing Networks; Operators; Example -- the MatMul operator; Difference between layers and operators 
505 8 |a Example -- a fully connected operatorBuilding a computation graph; Initializing Caffe2; Composing the model network; Sigmoid operator; Softmax operator; Adding input blobs to the workspace; Running the network; Building a multilayer perceptron neural network; MNIST problem; Building a MNIST MLP network; Initializing global constants; Composing network layers; ReLU layer; Set weights of network layers; Running the network; Summary; Chapter 3: Training Networks; Introduction to training; Components of a neural network; Structure of a neural network; Weights of a neural network; Training process 
505 8 |a Gradient descent variantsLeNet network; Convolution layer; Pooling layer; Training data; Building LeNet; Layer 1 -- Convolution; Layer 2 -- Max-pooling; Layers 3 and 4 -- Convolution and max-pooling; Layers 5 and 6 -- Fully connected and ReLU; Layer 7 and 8 -- Fully connected and Softmax; Training layers; Loss layer; Optimization layers; Accuracy layer; Summary; Chapter 4: Working with Caffe; The relationship between Caffe and Caffe2; Introduction to AlexNet; Building and installing Caffe; Installing Caffe prerequisites; Building Caffe; Caffe model file formats; Prototxt file; Caffemodel file 
505 8 |a Downloading Caffe model filesCaffe2 model file formats; predict_net file; init_net file; Converting a Caffe model to Caffe2; Converting a Caffe2 model to Caffe; Summary; Chapter 5: Working with Other Frameworks; Open Neural Network Exchange; Installing ONNX; ONNX format; ONNX IR; ONNX operators; ONNX in Caffe2; Exporting the Caffe2 model to ONNX; Using the ONNX model in Caffe2; Visualizing the ONNX model; Summary; Chapter 6: Deploying Models to Accelerators for Inference; Inference engines; NVIDIA TensorRT; Installing TensorRT; Using TensorRT 
505 8 |a Importing a pre-trained network or creating a networkBuilding an optimized engine from the network; Inference using execution context of an engine; TensorRT API and usage; Intel OpenVINO; Installing OpenVINO; Model conversion; Model inference; Summary; Chapter 7: Caffe2 at the Edge and in the cloud; Caffe2 at the edge on Raspberry Pi; Raspberry Pi; Installing Raspbian; Building Caffe2 on Raspbian; Caffe2 in the cloud using containers; Installing Docker; Installing nvidia-docker; Running Caffe2 containers; Caffe2 model visualization; Visualization using Caffe2 net_drawer 
500 |a Visualization using Netron 
520 |a Caffe2 by Facebook is a popular and relatively lightweight deep learning framework. Caffe2 is known for speed, accuracy and high efficiency in training neural networks. Caffe2 is widely used in mobile apps. This book is a fast paced guide that will teach you how to train and deploy deep learning models with Caffe2 on resource constrained platforms. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Learning. 
650 2 |a Learning 
650 6 |a Apprentissage. 
650 7 |a Artificial intelligence.  |2 bicssc 
650 7 |a Pattern recognition.  |2 bicssc 
650 7 |a Computer vision.  |2 bicssc 
650 7 |a Neural networks & fuzzy systems.  |2 bicssc 
650 7 |a Computers  |x Intelligence (AI) & Semantics.  |2 bisacsh 
650 7 |a Computers  |x Computer Vision & Pattern Recognition.  |2 bisacsh 
650 7 |a Computers  |x Neural Networks.  |2 bisacsh 
650 7 |a Learning  |2 fast 
776 0 8 |i Print version:  |a Nanjappa, Ashwin.  |t Caffe2 Quick Start Guide : Modular and Scalable Deep Learning Made Easy.  |d Birmingham : Packt Publishing, Limited, ©2019  |z 9781789137750 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=5784231  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH36368404 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL5784231 
938 |a YBP Library Services  |b YANK  |n 300576227 
938 |a EBSCOhost  |b EBSC  |n 2153715 
994 |a 92  |b IZTAP