Cargando…

Lagrangian Mechanics

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Le Van, Anh
Otros Autores: Bouzidi, Rabah
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Newark : John Wiley & Sons, Incorporated, 2019.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mu 4500
001 EBOOKCENTRAL_on1104082311
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |n|---|||||
008 190608s2019 nju o 000 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d OCLCQ  |d DEBBG  |d OCLCQ  |d REDDC  |d OCLCF  |d K6U  |d OCLCQ  |d OCLCO  |d OCLCL 
020 |a 9781119629719 
020 |a 1119629713 
035 |a (OCoLC)1104082311 
050 4 |a QC20.7.C3  |b .L4 2019 
082 0 4 |a 530.15564  |2 23 
049 |a UAMI 
100 1 |a Le Van, Anh. 
245 1 0 |a Lagrangian Mechanics 
260 |a Newark :  |b John Wiley & Sons, Incorporated,  |c 2019. 
300 |a 1 online resource (331 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Print version record. 
505 0 |a Cover; Half-Title Page; Dedication; Title Page; Copyright Page; Contents; Preface; The format adopted in this book; Synopsis; Acknowledgments; 1. Kinematics; 1.1. Observer -- Reference frame; 1.2. Time; 1.2.1. Date postulate; 1.2.2. Date change postulate; 1.3. Space; 1.3.1. Physical space; 1.3.2. Mathematical space; 1.3.3. Position postulate; 1.3.4. Typical operations on the mathematical space E; 1.3.5. Position change postulate; 1.3.6. The common reference frame R0; 1.3.7. Coordinate system of a reference frame; 1.3.8. Fixed point and fixed vector in a reference frame 
505 8 |a 1.4. Derivative of a vector with respect to a reference frame1.5. Velocity of a particle; 1.6. Angular velocity; 1.7. Reference frame defined by a rigid body: Rigid body defined by a reference frame; 1.8. Point attached to a rigid body: Vector attached to a rigid body; 1.9. Velocities in a rigid body; 1.10. Velocities in a mechanical system; 1.11. Acceleration; 1.11.1. Acceleration of a particle; 1.11.2. Accelerations in a mechanical system; 1.12. Composition of velocities and accelerations; 1.12.1. Composition of velocities; 1.12.2. Composition of accelerations 
505 8 |a 1.13. Angular momentum: Dynamic moment2. Parameterization and Parameterized Kinematics; 2.1. Position parameters; 2.1.1. Position parameters of a particle; 2.1.2. Position parameters for a rigid body; 2.1.3. Position parameters for a system of rigid bodies; 2.2. Mechanical joints; 2.3. Constraint equations; 2.4. Parameterization; 2.5. Dependence of the rotation tensor of the reference frame on the retained parameters; 2.6. Velocity of a particle; 2.7. Angular velocity; 2.8. Velocities in a rigid body; 2.9. Velocities in a mechanical system; 2.10. Parameterized velocity of a particle 
505 8 |a 2.10.1. Definition2.10.2. Practical calculation of the parameterized velocity; 2.11. Parameterized velocities in a rigid body; 2.12. Parameterized velocities in a mechanical system; 2.13. Lagrange's kinematic formula; 2.14. Parameterized kinetic energy; 3. Efforts; 3.1. Forces; 3.2. Torque; 3.3. Efforts; 3.4. External and internal efforts; 3.4.1. External effort; 3.4.2. Internal effort; 3.5. Given efforts and constraint efforts; 3.6. Moment field; 4. Virtual Kinematics; 4.1. Virtual derivative of a vector with respect to a reference frame; 4.2. Virtual velocity of a particle 
505 8 |a 4.3. Virtual angular velocity4.4. Virtual velocities in a rigid body; 4.4.1. The virtual velocity field (VVF) associated with a parameterization; 4.4.2. Virtual velocity field (VVF) in a rigid body; 4.5. Virtual velocities in a system; 4.5.1. VVF associated with a parameterization; 4.5.2. VVF on each rigid body of a system; 4.5.3. Virtual velocity of the center of mass; 4.6. Composition of virtual velocities; 4.6.1. Composition of virtual velocities of a particle; 4.6.2. Composition of virtual angular velocities; 4.6.3. Composition of VVFs in rigid bodies 
500 |a 4.7. Method of calculating the virtual velocity at a point 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Lagrangian functions. 
650 6 |a Fonctions de Lagrange. 
650 7 |a Lagrangian functions  |2 fast 
700 1 |a Bouzidi, Rabah. 
758 |i has work:  |a Lagrangian mechanics (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCFB7XjRbqWtjty8ddyjPV3  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Le Van, Anh.  |t Lagrangian Mechanics: Advanced Analytical Approach.  |d Newark : John Wiley & Sons, Incorporated, ©2019  |z 9781786304360 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=5784917  |z Texto completo 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL5784917 
994 |a 92  |b IZTAP