On space-time quasiconcave solutions of the heat equation /
"In this paper we first obtain a constant rank theorem for the second fundamental form of the space-time level sets of a space-time quasiconcave solution of the heat equation. Utilizing this constant rank theorem, we can obtain some strictly convexity results of the spatial and space-time level...
Clasificación: | Libro Electrónico |
---|---|
Autores principales: | , , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Providence, RI :
American Mathematical Society,
[2019]
|
Colección: | Memoirs of the American Mathematical Society ;
no. 1244. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Cover; Title page; Chapter 1. \040Introduction; Chapter 2. Basic definitions and the Constant Rank Theorem technique; 2.1. Preliminaries; 2.2. A constant rank theorem for the space-time convex solution of the heat equation; 2.3. The strict convexity of the level sets of harmonic functions in convex rings; Chapter 3. A microscopic space-time Convexity Principle for space-time level sets; 3.1. A constant rank theorem for the spatial second fundamental form; 3.2. A constant rank theorem for the space-time second fundamental form: CASE 1
- 3.3. A constant rank theorem for the space-time second fundamental form: CASE 2Chapter 4. The Strict Convexity of Space-time Level Sets; 4.1. The strict convexity of space-time level sets of Borell's solution; 4.2. Proof of Theorem 1.0.3; Chapter 5. Appendix: the proof in dimension =2; 5.1. minimal rank =0; 5.2. minimal rank =1; Bibliography; Back Cover