|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
EBOOKCENTRAL_on1103922653 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr |n||||||||| |
008 |
190607t20192019riu ob u000 u eng d |
040 |
|
|
|a COD
|b eng
|e rda
|e pn
|c COD
|d OCLCO
|d UIU
|d EBLCP
|d OCLCF
|d YDXIT
|d OCLCQ
|d N$T
|d OCLCQ
|d UKAHL
|d UX1
|d VT2
|d K6U
|d OCLCO
|d OCLCQ
|d OCLCO
|d OCLCQ
|d OCLCO
|d S9M
|d OCLCL
|
019 |
|
|
|a 1262686302
|
020 |
|
|
|a 147045243X
|q (electronic book)
|
020 |
|
|
|a 9781470452438
|q (electronic bk.)
|
020 |
|
|
|a 9781470435240
|q (paperback)
|
020 |
|
|
|a 1470435241
|
020 |
|
|
|z 9781470435240z
|
020 |
|
|
|z 1470435241
|
029 |
1 |
|
|a AU@
|b 000065454718
|
029 |
1 |
|
|a AU@
|b 000069668886
|
035 |
|
|
|a (OCoLC)1103922653
|z (OCoLC)1262686302
|
050 |
|
4 |
|a QA377
|b .C4385 2019
|
082 |
0 |
4 |
|a 515/.353
|2 23
|
084 |
|
|
|a 35K20
|a 35B30
|2 msc
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Chen, Chuanqiang,
|e author.
|
245 |
1 |
0 |
|a On space-time quasiconcave solutions of the heat equation /
|c Chuanqiang Chen, Xinan Ma, Paolo Salani.
|
264 |
|
1 |
|a Providence, RI :
|b American Mathematical Society,
|c [2019]
|
264 |
|
4 |
|c ©2019
|
300 |
|
|
|a 1 online resource (v, 81 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Memoirs of the American Mathematical Society,
|x 1947-6221 ;
|v number 1244
|
500 |
|
|
|a "May 2019 - Volume 259 - Number 1244 (first of 8 numbers)."
|
504 |
|
|
|a Includes bibliographical references (pages 79-81).
|
520 |
3 |
|
|a "In this paper we first obtain a constant rank theorem for the second fundamental form of the space-time level sets of a space-time quasiconcave solution of the heat equation. Utilizing this constant rank theorem, we can obtain some strictly convexity results of the spatial and space-time level sets of the space-time quasiconcave solution of the heat equation in a convex ring. To explain our ideas and for completeness, we also review the constant rank theorem technique for the space-time Hessian of space-time convex solution of heat equation and for the second fundamental form of the convex level sets for harmonic function."--Page v
|
588 |
0 |
|
|a Online version (viewed 7 June 2019)
|
505 |
0 |
|
|a Cover; Title page; Chapter 1. \040Introduction; Chapter 2. Basic definitions and the Constant Rank Theorem technique; 2.1. Preliminaries; 2.2. A constant rank theorem for the space-time convex solution of the heat equation; 2.3. The strict convexity of the level sets of harmonic functions in convex rings; Chapter 3. A microscopic space-time Convexity Principle for space-time level sets; 3.1. A constant rank theorem for the spatial second fundamental form; 3.2. A constant rank theorem for the space-time second fundamental form: CASE 1
|
505 |
8 |
|
|a 3.3. A constant rank theorem for the space-time second fundamental form: CASE 2Chapter 4. The Strict Convexity of Space-time Level Sets; 4.1. The strict convexity of space-time level sets of Borell's solution; 4.2. Proof of Theorem 1.0.3; Chapter 5. Appendix: the proof in dimension =2; 5.1. minimal rank =0; 5.2. minimal rank =1; Bibliography; Back Cover
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
650 |
|
0 |
|a Heat equation.
|
650 |
|
0 |
|a Convex domains.
|
650 |
|
0 |
|a Space and time.
|
650 |
|
6 |
|a Équation de la chaleur.
|
650 |
|
6 |
|a Algèbres convexes.
|
650 |
|
7 |
|a Funciones convexas
|2 embne
|
650 |
|
7 |
|a Espacio y tiempo
|2 embne
|
650 |
|
7 |
|a Convex domains
|2 fast
|
650 |
|
7 |
|a Heat equation
|2 fast
|
650 |
|
7 |
|a Space and time
|2 fast
|
700 |
1 |
|
|a Ma, Xinan,
|e author
|
700 |
1 |
|
|a Salani, Paolo,
|e author
|
758 |
|
|
|i has work:
|a On space-time quasiconcave solutions of the heat equation (Text)
|1 https://id.oclc.org/worldcat/entity/E39PCFRQ9VWPXkTg8FRGt7CTQC
|4 https://id.oclc.org/worldcat/ontology/hasWork
|
776 |
0 |
8 |
|i Print version:
|a Chen, Chuanqiang.
|t On space-time quasiconcave solutions of the heat equation.
|d Providence, RI : American Mathematical Society, [2019]
|w (DLC) 2019023424
|
830 |
|
0 |
|a Memoirs of the American Mathematical Society ;
|v no. 1244.
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=5788263
|z Texto completo
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH37445264
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL5788263
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 2158034
|
994 |
|
|
|a 92
|b IZTAP
|