Cargando…

Tensor Categories and Hopf Algebras

This volume contains the proceedings of the scientific session ""Hopf Algebras and Tensor Categories"", held from July 27-28, 2017, at the Mathematical Congress of the Americas in Montreal, Canada. Papers highlight the latest advances and research directions in the theory of tens...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Andruskiewitsch, Nicolás
Otros Autores: Nikshych, Dmitri
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Providence : American Mathematical Society, 2019.
Colección:Contemporary Mathematics Ser.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Cover; Title page; Contents; Preface; On finite GK-dimensional Nichols algebras of diagonal type; 1. Introduction; 2. Preliminaries; 3. General results; 4. Rank 2; References; On nonassociative graded-simple algebras over the field of real numbers; 1. Introduction; 2. Background on gradings; 3. Loop construction; 4. Alternative algebras; 5. Jordan algebras of degree 2; Acknowledgments; References; Nonsemisimple Hopf algebras of dimension 8 with the Chevalley property; 1. Introduction; 2. Preliminaries; 3. Nonsemisimple Hopf algebras of dimension 8
  • 2. Pivotal structures matched to a module category3. Eigenvalues of ²; 4. Eigenvalues of ² for dynamical quantum groups at roots of 1; 5. Acknowledgements.; Appendix A. Module traces and inner-product structures; References; Cohen-Macaulay invariant subalgebras of Hopf dense Galois extensions; 0. Introduction; 1. Hom-sets of the quotient category; 2. Hom-sets of the quotient categories of smash products; 3. Invariant subalgebras of Hopf dense Galois extensions; 4. Cohen-Macaulay property of as an ^{ }-module; 5. Finite group actions on noetherian complete semilocal algebras
  • 3. Pseudo-unitary inequality without pseudo-unitarity4. Bounds for formal codegrees; 5. Fusion categories of the same global dimension; Appendix A.; Acknowledgements; References; On Hopf algebras with triangular decomposition; 1. Introduction; 2. A general framework; 3. Preliminaries on Hopf algebras; 4. A method to construct Hopf algebras with triangular decomposition; 5. On the representation theory of \kuu_{(,)}(); Acknowedgments; References; Back Cover