Machine learning with R quick start guide : a beginner's guide to implementing machine learning techniques from scratch using R 3.5 /
This book is ideal for people wanting to get up-and-running with the core concepts of machine learning using R 3.5. This book follows a step-by-step approach to implementing an end-to-end pipeline, addressing data collection and processing, various types of data analysis, and machine learning use ca...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Birmingham, UK :
Packt Publishing,
2019.
|
Temas: | |
Acceso en línea: | Texto completo Texto completo |
MARC
LEADER | 00000cam a2200000 i 4500 | ||
---|---|---|---|
001 | EBOOKCENTRAL_on1100643399 | ||
003 | OCoLC | ||
005 | 20240329122006.0 | ||
006 | m o d | ||
007 | cr unu|||||||| | ||
008 | 190509s2019 enka o 000 0 eng d | ||
040 | |a UMI |b eng |e rda |e pn |c UMI |d TEFOD |d EBLCP |d MERUC |d UKMGB |d OCLCF |d YDX |d UKAHL |d OCLCQ |d N$T |d OCLCO |d OCLCQ |d K6U |d OCLCQ |d OCLCO |d OCLCL | ||
015 | |a GBB995017 |2 bnb | ||
016 | 7 | |a 019365493 |2 Uk | |
019 | |a 1091700087 |a 1096538373 | ||
020 | |a 1838647058 | ||
020 | |a 9781838647056 |q (electronic bk.) | ||
020 | |z 9781838644338 | ||
029 | 1 | |a AU@ |b 000066231680 | |
029 | 1 | |a CHNEW |b 001053193 | |
029 | 1 | |a CHVBK |b 567698750 | |
029 | 1 | |a UKMGB |b 019365493 | |
029 | 1 | |a AU@ |b 000071376898 | |
029 | 1 | |a AU@ |b 000065333098 | |
035 | |a (OCoLC)1100643399 |z (OCoLC)1091700087 |z (OCoLC)1096538373 | ||
037 | |a CL0501000047 |b Safari Books Online | ||
050 | 4 | |a Q325.5 | |
082 | 0 | 4 | |a 006.31 |2 23 |
049 | |a UAMI | ||
100 | 1 | |a Pastor Sanz, Iván, |e author. | |
245 | 1 | 0 | |a Machine learning with R quick start guide : |b a beginner's guide to implementing machine learning techniques from scratch using R 3.5 / |c Iván Pastor Sanz. |
264 | 1 | |a Birmingham, UK : |b Packt Publishing, |c 2019. | |
300 | |a 1 online resource : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
588 | 0 | |a Online resource; title from title page (Safari, viewed May 9, 2019). | |
505 | 0 | |a Cover; Title Page; Copyright and Credits; About Packt; Contributors; Table of Contents; Preface; Chapter 1: R Fundamentals for Machine Learning; R and RStudio installation; Things to know about R; Using RStudio; RStudio installation ; Some basic commands; Objects, special cases, and basic operators in R; Working with objects; Working with vectors; Vector indexing; Functions on vectors; Factor; Factor levels; Strings; String functions; Matrices; Representing matrices; Creating matrices; Accessing elements in a matrix; Matrix functions; Lists; Creating lists | |
505 | 8 | |a Accessing components and elements in a listData frames; Accessing elements in data frames; Functions of data frames; Importing or exporting data; Working with functions; Controlling code flow; All about R packages; Installing packages; Necessary packages; Taking further steps; Background on the financial crisis; Summary; Chapter 2: Predicting Failures of Banks -- Data Collection; Collecting financial data; Why FDIC?; Listing files; Finding files; Combining results; Removing tables; Knowing your observations; Handling duplications; Operating our problem; Collecting the target variable | |
505 | 8 | |a Structuring dataSummary; Chapter 3: Predicting Failures of Banks -- Descriptive Analysis; Data overview; Getting acquainted with our variables; Finding missing values for a variable; Converting the format of the variables; Sampling; Partitioning samples; Checking samples; Implementing descriptive analysis; Dealing with outliers; The winsorization process; Implementing winsorization; Distinguishing single valued variables; Treating missing information; Analyzing the missing value; Understanding the results; Summary; Chapter 4: Predicting Failures of Banks -- Univariate Analysis | |
505 | 8 | |a Feature selection algorithmFeature selection classes; Filter methods; Wrapper methods; Boruta package; Embedded methods; Ridge regression; A limitation of Ridge regression; Lasso ; Limitations of Lasso; Elastic net; Drawbacks of elastic net; Dimensionality reduction; Dimensionality reduction technique; Summary; Chapter 5: Predicting Failures of Banks -- Multivariate Analysis; Logistic regression; Regularized methods; Testing a random forest model; Gradient boosting; Deep learning in neural networks; Designing a neural network; Training a neural network; Support vector machines | |
505 | 8 | |a Selecting SVM parametersThe SVM kernel parameter; The cost parameter; Gamma parameter; Training an SVM model; Ensembles; Average model; Majority vote; Model of models; Automatic machine learning; Standardizing variables; Summary ; Chapter 6: Visualizing Economic Problems in the European Union; A general overview of economic problems in countries; Understanding credit ratings; The role of credit rating agencies; The credit rating process; Clustering countries based on macroeconomic imbalances; Data collection; Downloading and viewing the data; Streamlining data; Studying the data | |
520 | |a This book is ideal for people wanting to get up-and-running with the core concepts of machine learning using R 3.5. This book follows a step-by-step approach to implementing an end-to-end pipeline, addressing data collection and processing, various types of data analysis, and machine learning use cases. | ||
590 | |a ProQuest Ebook Central |b Ebook Central Academic Complete | ||
590 | |a O'Reilly |b O'Reilly Online Learning: Academic/Public Library Edition | ||
590 | |a eBooks on EBSCOhost |b EBSCO eBook Subscription Academic Collection - Worldwide | ||
650 | 0 | |a Machine learning. | |
650 | 0 | |a R (Computer program language) | |
650 | 6 | |a Apprentissage automatique. | |
650 | 6 | |a R (Langage de programmation) | |
650 | 7 | |a Machine learning |2 fast | |
650 | 7 | |a R (Computer program language) |2 fast | |
758 | |i has work: |a Machine learning with R quick start guide (Text) |1 https://id.oclc.org/worldcat/entity/E39PD3HwPYVjrpDJ7HP8xp3cw3 |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Sanz, Iván Pastor. |t Machine Learning with R Quick Start Guide : A Beginner's Guide to Implementing Machine Learning Techniques from Scratch Using R 3. 5. |d Birmingham : Packt Publishing Ltd, ©2019 |z 9781838644338 |
856 | 4 | 0 | |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=5744469 |z Texto completo |
856 | 4 | 0 | |u https://learning.oreilly.com/library/view/~/9781838644338/?ar |z Texto completo |
938 | |a Askews and Holts Library Services |b ASKH |n BDZ0039952970 | ||
938 | |a ProQuest Ebook Central |b EBLB |n EBL5744469 | ||
938 | |a EBSCOhost |b EBSC |n 2094784 | ||
938 | |a YBP Library Services |b YANK |n 16142490 | ||
994 | |a 92 |b IZTAP |