Cargando…

Deep learning with Microsoft Cognitive Toolkit quick start guide : a practical guide to building neural networks using Microsoft's open source deep learning framework /

Cognitive Toolkit is one of the most popular and recently open sourced deep learning toolkit by Microsoft. Cognitive Toolkit is used to train fast and effective deep learning models. This book will be a quick introduction to using Cognitive Toolkit and will teach you how to train and validate differ...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Meints, Willem (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Birmingham, UK : Packt Publishing, 2019.
Temas:
Acceso en línea:Texto completo
Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBOOKCENTRAL_on1100643380
003 OCoLC
005 20240329122006.0
006 m o d
007 cr unu||||||||
008 190509s2019 enka ob 000 0 eng d
040 |a UMI  |b eng  |e rda  |e pn  |c UMI  |d TEFOD  |d EBLCP  |d UKMGB  |d OCLCF  |d YDX  |d UKAHL  |d OCLCQ  |d N$T  |d OCLCQ  |d OCLCO  |d K6U  |d OCLCQ  |d OCLCO  |d OCLCL 
015 |a GBB995012  |2 bnb 
016 7 |a 019365478  |2 Uk 
019 |a 1091366122  |a 1096240071 
020 |a 1789803195 
020 |a 9781789803198  |q (electronic bk.) 
020 |z 9781789802993 
029 1 |a AU@  |b 000066231098 
029 1 |a CHNEW  |b 001053154 
029 1 |a CHVBK  |b 56769836X 
029 1 |a UKMGB  |b 019365478 
029 1 |a AU@  |b 000071376899 
029 1 |a AU@  |b 000065333093 
035 |a (OCoLC)1100643380  |z (OCoLC)1091366122  |z (OCoLC)1096240071 
037 |a CL0501000047  |b Safari Books Online 
050 4 |a QA76.87 
082 0 4 |a 006.32  |2 23 
049 |a UAMI 
100 1 |a Meints, Willem,  |e author. 
245 1 0 |a Deep learning with Microsoft Cognitive Toolkit quick start guide :  |b a practical guide to building neural networks using Microsoft's open source deep learning framework /  |c Willem Meints. 
264 1 |a Birmingham, UK :  |b Packt Publishing,  |c 2019. 
300 |a 1 online resource :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references. 
588 0 |a Online resource; title from title page (Safari, viewed May 8, 2019). 
505 0 |a Cover; Title Page; Copyright and Credits; Dedication; About Packt; Contributors; Table of Contents; Preface; Chapter1: Getting Started with CNTK; The relationship between AI, machine learning, and deep learning; Limitations of machine learning; How does deep learning work?; The neural network architecture; Artificial neurons; Predicting output with a neural network; Optimizing a neural network; What is CNTK?; Features of CNTK; A high-speed low-level API; Basic building blocks for quickly creating neural networks; Measuring model performance; Loading and processing large datasets 
505 8 |a Using models from C# and JavaInstalling CNTK; Installing on Windows; Installing Anaconda; Upgrading pip; Installing CNTK; Installing on Linux; Installing Anaconda; Upgrading pip to the latest version; Installing the CNTK package; Using your GPU with CNTK; Enabling GPU usage on Windows; Enabling GPU usage on Linux; Summary; Chapter2: Building Neural Networks with CNTK; Technical requirements; Basic neural network concepts in CNTK; Building neural networks using layer functions; Customizing layer settings; Using learners and trainers to optimize the parameters in a neural network 
505 8 |a Loss functionsModel metrics; Building your first neural network; Building the network structure; Choosing an activation function; Choosing an activation function for the output layer; Choosing an activation function for the hidden layers; Picking a loss function; Recording metrics; Training the neural network; Choosing a learner and setting up training; Feeding data into the trainer to optimize the neural network; Checking the performance of the neural network; Making predictions with a neural network; Improving the model; Summary; Chapter3: Getting Data into Your Neural Network 
505 8 |a Technical requirementsTraining a neural network efficiently with minibatches; Working with small in-memory datasets; Working with numpy arrays; Working with pandas DataFrames; Working with large datasets; Creating a MinibatchSource instance; Creating CTF files; Feeding data into a training session; Taking control over the minibatch loop; Summary; Chapter4: Validating Model Performance; Technical requirements; Choosing a good strategy to validate model performance; Using a hold-out dataset for validation; Using k-fold cross-validation; What about underfitting and overfitting? 
505 8 |a Validating performance of a classification modelUsing a confusion matrix to validate your classification model; Using the F-measure as an alternative to the confusion matrix; Measuring classification performance in CNTK; Validating performance of a regression model; Measuring the accuracy of your predictions; Measuring regression model performance in CNTK; Measuring performance for out-of-memory datasets; Measuring performance when working with minibatch sources; Measuring performance when working with a manual minibatch loop; Monitoring your model 
520 |a Cognitive Toolkit is one of the most popular and recently open sourced deep learning toolkit by Microsoft. Cognitive Toolkit is used to train fast and effective deep learning models. This book will be a quick introduction to using Cognitive Toolkit and will teach you how to train and validate different types of neural networks. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
630 0 0 |a Microsoft Cognitive Toolkit. 
650 0 |a Neural networks (Computer science) 
650 0 |a Machine learning. 
650 0 |a Artificial intelligence. 
650 2 |a Neural Networks, Computer 
650 2 |a Artificial Intelligence 
650 2 |a Machine Learning 
650 6 |a Réseaux neuronaux (Informatique) 
650 6 |a Apprentissage automatique. 
650 6 |a Intelligence artificielle. 
650 7 |a artificial intelligence.  |2 aat 
650 7 |a Artificial intelligence  |2 fast 
650 7 |a Machine learning  |2 fast 
650 7 |a Neural networks (Computer science)  |2 fast 
758 |i has work:  |a Deep Learning with Microsoft Cognitive Toolkit Quick Start Guide (Text)  |1 https://id.oclc.org/worldcat/entity/E39PD3383XtkfDbBqQwtQkJ7HC  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Meints, Willem.  |t Deep Learning with Microsoft Cognitive Toolkit Quick Start Guide : A Practical Guide to Building Neural Networks Using Microsoft's Open Source Deep Learning Framework.  |d Birmingham : Packt Publishing Ltd, ©2019  |z 9781789802993 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=5742794  |z Texto completo 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781789802993/?ar  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n BDZ0039949931 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL5742794 
938 |a EBSCOhost  |b EBSC  |n 2093815 
938 |a YBP Library Services  |b YANK  |n 16139591 
994 |a 92  |b IZTAP