Cargando…

Multi-Objective Optimization in Theory and Practice II : metaheuristic algorithms.

Multi-Objective Optimization in Theory and Practice is a simplified two-part approach to multi-objective optimization (MOO) problems. This second part focuses on the use of metaheuristic algorithms in more challenging practical cases. The book includes ten chapters that cover several advanced MOO te...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Keller, André A.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Sharjah : Bentham Science Publishers, 2019.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mi 4500
001 EBOOKCENTRAL_on1097974294
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |n|---|||||
008 190420s2019 xx o 000 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d OCLCQ  |d YDX  |d N$T  |d OCLCQ  |d OCLCF  |d OCLCQ  |d UKAHL  |d OCLCO  |d OCL  |d OCLCQ  |d OCLCO  |d OCLCL 
019 |a 1097276484 
020 |a 1681087057 
020 |a 9781681087054  |q (electronic bk.) 
029 1 |a AU@  |b 000068480981 
029 1 |a AU@  |b 000068475183 
035 |a (OCoLC)1097974294  |z (OCoLC)1097276484 
050 4 |a QA9.58 
082 0 4 |a 511.8  |2 23 
049 |a UAMI 
100 1 |a Keller, André A. 
245 1 0 |a Multi-Objective Optimization in Theory and Practice II :  |b metaheuristic algorithms. 
260 |a Sharjah :  |b Bentham Science Publishers,  |c 2019. 
300 |a 1 online resource (310 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
520 |a Multi-Objective Optimization in Theory and Practice is a simplified two-part approach to multi-objective optimization (MOO) problems. This second part focuses on the use of metaheuristic algorithms in more challenging practical cases. The book includes ten chapters that cover several advanced MOO techniques. These include the determination of Pareto-optimal sets of solutions, metaheuristic algorithms, genetic search algorithms and evolution strategies, decomposition algorithms, hybridization of different metaheuristics, and many-objective (more than three objectives) optimization and parallel computation. The final section of the book presents information about the design and types of fifty test problems for which the Pareto-optimal front is approximated. For each of them, the package NSGA-II is used to approximate the Pareto-optimal front. It is an essential handbook for students and teachers involved in advanced optimization courses in engineering, information science and mathematics degree programs. 
588 0 |a Print version record. 
505 0 |a Cover; Title; Biblography; End User License Agreement; Contents; Preface; Acknowledgements; Pareto-Optimal Front Determination; Pareto-Optimal Front Determination; 1.1. INTRODUCTION; 1.1.1. Heuristic and Metaheuristic Algorithms; 1.1.2. History of Metaheuristics; 1.1.3. Probabilistic Metaheuristics and Applications; 1.1.4. Optimum Design of Framed Structures: A Review of Literature; 1.2. Elements of Static Multi-Objective Programming; 1.2.1. Problem Formulation; 1.2.2. Concept of Dominance; 1.2.3. Pareto-Optimality; 1.3. Pareto-Optimal Front; 1.3.1. Non-Dominated Solutions 
505 8 |a 1.3.2. Analytical Pareto-Optimal Front1.3.3. Near Pareto-Optimal Front; 1.3.4. Shapes of a Pareto-Optimal Front; 1.4. Selection Procedures of Algorithms; 1.4.1. Elitist Pareto Criteria; 1.4.2. Non-Pareto Criteria; 1.4.3. Bi-criterion Evolution; 1.4.4. Other Concepts of Dominance; NOTES; REFERENCES; Untitled; Metaheuristic Optimization Algorithms; Metaheuristic Optimization Algorithms; 2.1. INTRODUCTION; 2.2. Simulated Annealing Algorithm; 2.2.1. Annealing Principle and Description; 2.2.2. Problem Formulation; 2.2.3. Algorithm Description; 2.3. Multi-Objective Simulated Annealing 
505 8 |a 2.3.1. MOSA Algorithms2.3.2. Test Problems; NOTES; REFERENCES√; Evolutionary Strategy Algorithms; Evolutionary Strategy Algorithms; 3.1. INTRODUCTION1; 3.2. Principles and Operators; 3.2.1. Algorithm for Solving Optimization Problems; 3.2.2. Binary and Real-Number Encoding; 3.2.3. Genetic Operators; 3.3. GA-Based Mathematica® Notebook; 3.4. Single-Objective Optimization; 3.4.1. SciLab Package for Genetic Algorithm; 3.4.2. GA-Based Software Package: GENOCOP III; NOTES; REFERENCES√; Genetic Search Algorithms; Genetic Search Algorithms; 4.1. INTRODUCTION 
505 8 |a 4.2. Niched Pareto Genetic Algorithms (NPGA)4.3. Non-Dominated Sorting Genetic Algorithm; 4.4. Multi-Objective Optimization Test Problems; 4.4.1. Unconstrained Optimization Problems; 4.4.2. Constrained Optimization Problem; NOTES; REFERENCES√; Evolution Strategy Algorithms; Evolution Strategy Algorithms; 5.1. INTRODUCTION; 5.2. Differential Evolution Strategy; 5.2.1. Principles and Algorithm2; 5.2.2. DE Operators; 5.3. DE Algorithm for Single-Objective Optimization Problems; 5.4. Multi-Objective DE Algorithm; 5.4.1. Diversity-Promoting; 5.4.2. Performing Elitism; NOTES; REFERENCES√ 
505 8 |a Swarm Intelligence and Co-Evolutionary AlgorithmsSwarm Intelligence and Co-Evolutionary Algorithms; 6.1. INTRODUCTION; 6.2. Particle Swarm Optimization; 6.3. Cooperative Co-Evolutionary Genetic Algorithms; 6.4. Competitive Predator-Prey Optimization Model; 6.4.1. Principle of PP Algorithm; 6.4.2. PP Algorithm; 6.4.3. Illustrative Problems; NOTES; REFERENCES√; Decomposition-Based and Hybrid Evolutionary Algorithms; Decomposition-Based and Hybrid Evolutionary Algorithms; 7.1. INTRODUCTION; 7.2. Decomposition-Based Algorithm; 7.2.1. Scalar Decomposition Principle 
500 |a 7.2.2. Decomposition-Based MOEA Algorithm 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Algorithms. 
650 0 |a Metaheuristics. 
650 0 |a Computer algorithms. 
650 6 |a Algorithmes. 
650 6 |a Métaheuristiques. 
650 7 |a algorithms.  |2 aat 
650 7 |a Computer algorithms  |2 fast 
650 7 |a Algorithms  |2 fast 
650 7 |a Metaheuristics  |2 fast 
758 |i has work:  |a Multi-Objective Optimization in Theory and Practice II (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCGrr9WTq7VwgtJpFP86PHC  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Keller, André A.  |t Multi-Objective Optimization in Theory and Practice II: Metaheuristic Algorithms.  |d Sharjah : Bentham Science Publishers, ©2019  |z 9781681087061 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=5750363  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH37776457 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL5750363 
938 |a EBSCOhost  |b EBSC  |n 2100972 
938 |a YBP Library Services  |b YANK  |n 16162951 
994 |a 92  |b IZTAP