Fractional dynamics on networks and lattices /
This book analyzes stochastic processes on networks and regular structures such as lattices by employing the Markovian random walk approach. Part 1 is devoted to the study of local and non-local random walks. It shows how non-local random walk strategies can be defined by functions of the Laplacian...
Clasificación: | Libro Electrónico |
---|---|
Autores principales: | , , , , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
London : Hoboken :
ISTE Ltd. ; John Wiley & Sons, Inc.,
2019.
|
Colección: | Mechanical engineering and solid mechanics series.
|
Temas: | |
Acceso en línea: | Texto completo |
Sumario: | This book analyzes stochastic processes on networks and regular structures such as lattices by employing the Markovian random walk approach. Part 1 is devoted to the study of local and non-local random walks. It shows how non-local random walk strategies can be defined by functions of the Laplacian matrix that maintain the stochasticity of the transition probabilities. A major result is that only two types of functions are admissible: type (i) functions generate asymptotically local walks with the emergence of Brownian motion, whereas type (ii) functions generate asymptotically scale-free non-local "fractional" walks with the emergence of LEvy flights. In Part 2, fractional dynamics and LEvy flight behavior are analyzed thoroughly, and a generalization of POlya's classical recurrence theorem is developed for fractional walks. The authors analyze primary fractional walk characteristics such as the mean occupation time, the mean first passage time, the fractal scaling of the set of distinct nodes visited, etc. The results show the improved search capacities of fractional dynamics on networks |
---|---|
Descripción Física: | 1 online resource : illustrations |
Bibliografía: | Includes bibliographical references and index. |
ISBN: | 9781119608165 1119608163 178630158X 9781786301581 9781119608219 111960821X |