|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
EBOOKCENTRAL_on1096296254 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr |n||||||||| |
008 |
190410t20192019riu ob 001 0deng d |
040 |
|
|
|a UIU
|b eng
|e rda
|e pn
|c UIU
|d OCLCO
|d EBLCP
|d OCLCF
|d COD
|d OCLCQ
|d OCLCO
|d OCLCA
|d UAB
|d OCL
|d OCLCQ
|d UKAHL
|d OCLCQ
|d OCLCO
|d OCLCQ
|d OCLCO
|d OCLCL
|d S9M
|d OCLCL
|
020 |
|
|
|a 9781470450670
|
020 |
|
|
|a 1470450674
|
020 |
|
|
|z 9781470435400
|q (alk. paper)
|
020 |
|
|
|z 1470435403
|q (alk. paper)
|
029 |
1 |
|
|a AU@
|b 000065662836
|
035 |
|
|
|a (OCoLC)1096296254
|
050 |
|
4 |
|a QA247
|b .P38 2019
|
082 |
0 |
4 |
|a 512.7/4
|2 23
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Patrikis, Stefan,
|d 1984-
|e author.
|1 https://id.oclc.org/worldcat/entity/E39PCjxPCGKWChdRXCdgXcT8md
|
245 |
1 |
0 |
|a Variations on a theorem of Tate /
|c Stefan Patrikis.
|
264 |
|
1 |
|a Providence, RI :
|b American Mathematical Society,
|c 2019.
|
264 |
|
4 |
|c ©2019
|
300 |
|
|
|a 1 online resource (vii, 156 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Memoirs of the American Mathematical Society,
|x 0065-9266 ;
|v volume 258, number 1238
|
500 |
|
|
|a "March 2019 - Volume 258 - Number 1238 (second of 7 numbers)."
|
500 |
|
|
|a "Keywords: Galois representations, algebraic automorphic representations, motives for motivated cycles, monodromy, Kuga-Satake construction, hyperkähler varieties"--Online information
|
500 |
|
|
|a Title same as author's dissertation, Princeton University, 2012.
|
504 |
|
|
|a Includes bibliographical references (pages 147-152) and index.
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|a Cover; Title page; Chapter 1. Introduction; 1.1. Introduction; 1.2. What is assumed of the reader: Background references; 1.3. Acknowledgments; 1.4. Notation; Chapter 2. Foundations & examples; 2.1. Review of lifting results; 2.2. ℓ-adic Hodge theory preliminaries; 2.3. \mr{ }₁; 2.4. Coefficients: Generalizing Weil's CM descent of type Hecke characters; 2.5. W-algebraic representations; 2.6. Further examples: The Hilbert modular case and \mr{ }₂×\mr{ }₂\xrightarrow{⊠}\mr{ }₄; 2.7. Galois lifting: Hilbert modular case; 2.8. Spin examples
|
505 |
8 |
|
|a Chapter 3. Galois and automorphic lifting3.1. Lifting -algebraic representations; 3.2. Galois lifting: The general case; 3.3. Applications: Comparing the automorphic and Galois formalisms; 3.4. Monodromy of abstract Galois representations; Chapter 4. Motivic lifting; 4.1. Motivated cycles: Generalities; 4.2. Motivic lifting: The hyperkähler case; 4.3. Towards a generalized Kuga-Satake theory; Bibliography; Index of symbols; Index of terms and concepts; Back Cover
|
520 |
|
|
|a "Let F be a number field. These notes explore Galois-theoretic, automorphic, and motivic analogues and refinements of Tate's basic result that continuous projective representations \mathrm{Gal}(\overline{F}/F) \to \mathrm{PGL}_n(\mathbb{C}) lift to \mathrm{GL}_n(\mathbb{C}). The author takes special interest in the interaction of this result with algebraicity (for automorphic representations) and geometricity (in the sense of Fontaine-Mazur). On the motivic side, the author studies refinements and generalizations of the classical Kuga-Satake construction. Some auxiliary results touch on: possible infinity-types of algebraic automorphic representations; comparison of the automorphic and Galois "Tannakian formalisms"; monodromy (independence-of-l) questions for abstract Galois representations."--Page v
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
600 |
1 |
0 |
|a Tate, John Torrence,
|d 1925-2019.
|
600 |
1 |
7 |
|a Tate, John Torrence,
|d 1925-2019
|2 fast
|1 https://id.oclc.org/worldcat/entity/E39PBJjMxTqF3TXWfGkccCj3cP
|
650 |
|
0 |
|a Algebraic number theory.
|
650 |
|
0 |
|a Algebraic topology.
|
650 |
|
0 |
|a Galois cohomology.
|
650 |
|
0 |
|a Galois theory.
|
650 |
|
6 |
|a Théorie algébrique des nombres.
|
650 |
|
6 |
|a Topologie algébrique.
|
650 |
|
6 |
|a Cohomologie galoisienne.
|
650 |
|
6 |
|a Théorie de Galois.
|
650 |
|
7 |
|a Topología algebraica
|2 embne
|
650 |
0 |
7 |
|a Números, Teoría de
|2 embucm
|
650 |
|
7 |
|a Algebraic number theory
|2 fast
|
650 |
|
7 |
|a Algebraic topology
|2 fast
|
650 |
|
7 |
|a Galois cohomology
|2 fast
|
650 |
|
7 |
|a Galois theory
|2 fast
|
758 |
|
|
|i has work:
|a Variations on a theorem of Tate (Text)
|1 https://id.oclc.org/worldcat/entity/E39PCFy4KwfrymfqFPyKMBd8yb
|4 https://id.oclc.org/worldcat/ontology/hasWork
|
776 |
0 |
8 |
|i Print version:
|a Patrikis, Stefan, 1984-
|t Variations on a theorem of Tate.
|d Providence, RI : American Mathematical Society, [2019]
|z 9781470435400
|w (DLC) 2019013161
|w (OCoLC)1079402472
|
830 |
|
0 |
|a Memoirs of the American Mathematical Society ;
|v no. 1238.
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=5770284
|z Texto completo
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH37445243
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL5770284
|
994 |
|
|
|a 92
|b IZTAP
|