Cargando…

Variations on a theorem of Tate /

"Let F be a number field. These notes explore Galois-theoretic, automorphic, and motivic analogues and refinements of Tate's basic result that continuous projective representations \mathrm{Gal}(\overline{F}/F) \to \mathrm{PGL}_n(\mathbb{C}) lift to \mathrm{GL}_n(\mathbb{C}). The author tak...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Patrikis, Stefan, 1984- (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Providence, RI : American Mathematical Society, 2019.
Colección:Memoirs of the American Mathematical Society ; no. 1238.
Temas:
Acceso en línea:Texto completo
Descripción
Sumario:"Let F be a number field. These notes explore Galois-theoretic, automorphic, and motivic analogues and refinements of Tate's basic result that continuous projective representations \mathrm{Gal}(\overline{F}/F) \to \mathrm{PGL}_n(\mathbb{C}) lift to \mathrm{GL}_n(\mathbb{C}). The author takes special interest in the interaction of this result with algebraicity (for automorphic representations) and geometricity (in the sense of Fontaine-Mazur). On the motivic side, the author studies refinements and generalizations of the classical Kuga-Satake construction. Some auxiliary results touch on: possible infinity-types of algebraic automorphic representations; comparison of the automorphic and Galois "Tannakian formalisms"; monodromy (independence-of-l) questions for abstract Galois representations."--Page v
Notas:"March 2019 - Volume 258 - Number 1238 (second of 7 numbers)."
"Keywords: Galois representations, algebraic automorphic representations, motives for motivated cycles, monodromy, Kuga-Satake construction, hyperkähler varieties"--Online information
Title same as author's dissertation, Princeton University, 2012.
Descripción Física:1 online resource (vii, 156 pages)
Bibliografía:Includes bibliographical references (pages 147-152) and index.
ISBN:9781470450670
1470450674
ISSN:0065-9266 ;