Variations on a theorem of Tate /
"Let F be a number field. These notes explore Galois-theoretic, automorphic, and motivic analogues and refinements of Tate's basic result that continuous projective representations \mathrm{Gal}(\overline{F}/F) \to \mathrm{PGL}_n(\mathbb{C}) lift to \mathrm{GL}_n(\mathbb{C}). The author tak...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Providence, RI :
American Mathematical Society,
2019.
|
Colección: | Memoirs of the American Mathematical Society ;
no. 1238. |
Temas: | |
Acceso en línea: | Texto completo |
Sumario: | "Let F be a number field. These notes explore Galois-theoretic, automorphic, and motivic analogues and refinements of Tate's basic result that continuous projective representations \mathrm{Gal}(\overline{F}/F) \to \mathrm{PGL}_n(\mathbb{C}) lift to \mathrm{GL}_n(\mathbb{C}). The author takes special interest in the interaction of this result with algebraicity (for automorphic representations) and geometricity (in the sense of Fontaine-Mazur). On the motivic side, the author studies refinements and generalizations of the classical Kuga-Satake construction. Some auxiliary results touch on: possible infinity-types of algebraic automorphic representations; comparison of the automorphic and Galois "Tannakian formalisms"; monodromy (independence-of-l) questions for abstract Galois representations."--Page v |
---|---|
Notas: | "March 2019 - Volume 258 - Number 1238 (second of 7 numbers)." "Keywords: Galois representations, algebraic automorphic representations, motives for motivated cycles, monodromy, Kuga-Satake construction, hyperkähler varieties"--Online information Title same as author's dissertation, Princeton University, 2012. |
Descripción Física: | 1 online resource (vii, 156 pages) |
Bibliografía: | Includes bibliographical references (pages 147-152) and index. |
ISBN: | 9781470450670 1470450674 |
ISSN: | 0065-9266 ; |