Cargando…

Advanced numerical and semi analytical methods for differential equations /

Examines numerical and semi-analytical methods for differential equations that can be used for solving practical ODEs and PDEs This student-friendly book deals with various approaches for solving differential equations numerically or semi-analytically depending on the type of equations and offers si...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Chakraverty, Snehashish (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Hoboken, NJ : John Wiley & Sons, Inc., 2019.
Temas:
Acceso en línea:Texto completo
Texto completo
Tabla de Contenidos:
  • Cover; Title Page; Copyright; Contents; Acknowledgments; Preface; Chapter 1 Basic Numerical Methods; 1.1 Introduction; 1.2 Ordinary Differential Equation; 1.3 Euler Method; 1.4 Improved Euler Method; 1.5 Runge-Kutta Methods; 1.5.1 Midpoint Method; 1.5.2 Runge-Kutta Fourth Order; 1.6 Multistep Methods; 1.6.1 Adams-Bashforth Method; 1.6.2 Adams-Moulton Method; 1.7 Higher-Order ODE; References; Chapter 2 Integral Transforms; 2.1 Introduction; 2.2 Laplace Transform; 2.2.1 Solution of Differential Equations Using Laplace Transforms; 2.3 Fourier Transform
  • 2.3.1 Solution of Partial Differential Equations Using Fourier TransformsReferences; Chapter 3 Weighted Residual Methods; 3.1 Introduction; 3.2 Collocation Method; 3.3 Subdomain Method; 3.4 Least-square Method; 3.5 Galerkin Method; 3.6 Comparison of WRMs; References; Chapter 4 Boundary Characteristics Orthogonal Polynomials; 4.1 Introduction; 4.2 Gram-Schmidt Orthogonalization Process; 4.3 Generation of BCOPs; 4.4 Galerkin's Method with BCOPs; 4.5 Rayleigh-Ritz Method with BCOPs; References; Chapter 5 Finite Difference Method; 5.1 Introduction; 5.2 Finite Difference Schemes
  • 5.2.1 Finite Difference Schemes for Ordinary Differential Equations5.2.1.1 Forward Difference Scheme; 5.2.1.2 Backward Difference Scheme; 5.2.1.3 Central Difference Scheme; 5.2.2 Finite Difference Schemes for Partial Differential Equations; 5.3 Explicit and Implicit Finite Difference Schemes; 5.3.1 Explicit Finite Difference Method; 5.3.2 Implicit Finite Difference Method; References; Chapter 6 Finite Element Method; 6.1 Introduction; 6.2 Finite Element Procedure; 6.3 Galerkin Finite Element Method; 6.3.1 Ordinary Differential Equation; 6.3.2 Partial Differential Equation
  • 6.4 Structural Analysis Using FEM6.4.1 Static Analysis; 6.4.2 Dynamic Analysis; References; Chapter 7 Finite Volume Method; 7.1 Introduction; 7.2 Discretization Techniques of FVM; 7.3 General Form of Finite Volume Method; 7.3.1 Solution Process Algorithm; 7.4 One-Dimensional Convection-Diffusion Problem; 7.4.1 Grid Generation; 7.4.2 Solution Procedure of Convection-Diffusion Problem; References; Chapter 8 Boundary Element Method; 8.1 Introduction; 8.2 Boundary Representation and Background Theory of BEM; 8.2.1 Linear Differential Operator; 8.2.2 The Fundamental Solution
  • 8.2.2.1 Heaviside Function8.2.2.2 Dirac Delta Function; 8.2.2.3 Finding the Fundamental Solution; 8.2.3 Green's Function; 8.2.3.1 Green's Integral Formula; 8.3 Derivation of the Boundary Element Method; 8.3.1 BEM Algorithm; References; Chapter 9 Akbari-Ganji's Method; 9.1 Introduction; 9.2 Nonlinear Ordinary Differential Equations; 9.2.1 Preliminaries; 9.2.2 AGM Approach; 9.3 Numerical Examples; 9.3.1 Unforced Nonlinear Differential Equations; 9.3.2 Forced Nonlinear Differential Equation; References; Chapter 10 Exp-Function Method; 10.1 Introduction; 10.2 Basics of Exp-Function Method