Cargando…

Advanced numerical and semi analytical methods for differential equations /

Examines numerical and semi-analytical methods for differential equations that can be used for solving practical ODEs and PDEs This student-friendly book deals with various approaches for solving differential equations numerically or semi-analytically depending on the type of equations and offers si...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Chakraverty, Snehashish (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Hoboken, NJ : John Wiley & Sons, Inc., 2019.
Temas:
Acceso en línea:Texto completo
Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBOOKCENTRAL_on1090728073
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |||||||||||
008 190506s2019 nju o 001 0 eng
010 |a  2019022130 
040 |a DLC  |b eng  |e rda  |c DLC  |d N$T  |d EBLCP  |d YDX  |d DG1  |d RECBK  |d UKMGB  |d UIU  |d OCLCF  |d UMI  |d DLC  |d OCLCO  |d NHM  |d UKAHL  |d VT2  |d SFB  |d K6U  |d LVT  |d IEEEE  |d OCLCO  |d OCLCQ  |d OCLCO  |d YWS  |d OCLCQ  |d OCLCL 
015 |a GBB969443  |2 bnb 
016 7 |a 019364164  |2 Uk 
019 |a 1090853738  |a 1091145901  |a 1117875324  |a 1119738727  |a 1124455749  |a 1164461376  |a 1229385075 
020 |a 9781119423447  |q (Adobe PDF) 
020 |a 1119423449 
020 |a 9781119423430  |q (ePub) 
020 |a 1119423430 
020 |z 9781119423423 (hardcover) 
020 |a 9781119423461  |q (electronic bk.) 
020 |a 1119423465  |q (electronic bk.) 
020 |z 1119423422 
024 7 |a 10.1002/9781119423461  |2 doi 
029 1 |a UKMGB  |b 019364164 
029 1 |a CHVBK  |b 567422356 
029 1 |a CHNEW  |b 001050882 
029 1 |a AU@  |b 000066138037 
029 1 |a AU@  |b 000065220438 
029 1 |a AU@  |b 000067098993 
035 |a (OCoLC)1090728073  |z (OCoLC)1090853738  |z (OCoLC)1091145901  |z (OCoLC)1117875324  |z (OCoLC)1119738727  |z (OCoLC)1124455749  |z (OCoLC)1164461376  |z (OCoLC)1229385075 
037 |a 9781119423430  |b Wiley 
042 |a pcc 
050 0 0 |a QA372 
050 4 |a QA372  |b .A338 2019e 
072 7 |a MAT  |x 005000  |2 bisacsh 
072 7 |a MAT  |x 034000  |2 bisacsh 
082 0 0 |a 515/.35  |2 23 
049 |a UAMI 
245 0 0 |a Advanced numerical and semi analytical methods for differential equations /  |c Snehashish Chakraverty (National Institute of Technology Rourkela, Odisha, India) [and three others]. 
264 1 |a Hoboken, NJ :  |b John Wiley & Sons, Inc.,  |c 2019. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
500 |a Includes index. 
588 |a Description based on print version record and CIP data provided by publisher. 
504 |a Includes bibliographical references and index. 
505 0 |a Cover; Title Page; Copyright; Contents; Acknowledgments; Preface; Chapter 1 Basic Numerical Methods; 1.1 Introduction; 1.2 Ordinary Differential Equation; 1.3 Euler Method; 1.4 Improved Euler Method; 1.5 Runge-Kutta Methods; 1.5.1 Midpoint Method; 1.5.2 Runge-Kutta Fourth Order; 1.6 Multistep Methods; 1.6.1 Adams-Bashforth Method; 1.6.2 Adams-Moulton Method; 1.7 Higher-Order ODE; References; Chapter 2 Integral Transforms; 2.1 Introduction; 2.2 Laplace Transform; 2.2.1 Solution of Differential Equations Using Laplace Transforms; 2.3 Fourier Transform 
505 8 |a 2.3.1 Solution of Partial Differential Equations Using Fourier TransformsReferences; Chapter 3 Weighted Residual Methods; 3.1 Introduction; 3.2 Collocation Method; 3.3 Subdomain Method; 3.4 Least-square Method; 3.5 Galerkin Method; 3.6 Comparison of WRMs; References; Chapter 4 Boundary Characteristics Orthogonal Polynomials; 4.1 Introduction; 4.2 Gram-Schmidt Orthogonalization Process; 4.3 Generation of BCOPs; 4.4 Galerkin's Method with BCOPs; 4.5 Rayleigh-Ritz Method with BCOPs; References; Chapter 5 Finite Difference Method; 5.1 Introduction; 5.2 Finite Difference Schemes 
505 8 |a 5.2.1 Finite Difference Schemes for Ordinary Differential Equations5.2.1.1 Forward Difference Scheme; 5.2.1.2 Backward Difference Scheme; 5.2.1.3 Central Difference Scheme; 5.2.2 Finite Difference Schemes for Partial Differential Equations; 5.3 Explicit and Implicit Finite Difference Schemes; 5.3.1 Explicit Finite Difference Method; 5.3.2 Implicit Finite Difference Method; References; Chapter 6 Finite Element Method; 6.1 Introduction; 6.2 Finite Element Procedure; 6.3 Galerkin Finite Element Method; 6.3.1 Ordinary Differential Equation; 6.3.2 Partial Differential Equation 
505 8 |a 6.4 Structural Analysis Using FEM6.4.1 Static Analysis; 6.4.2 Dynamic Analysis; References; Chapter 7 Finite Volume Method; 7.1 Introduction; 7.2 Discretization Techniques of FVM; 7.3 General Form of Finite Volume Method; 7.3.1 Solution Process Algorithm; 7.4 One-Dimensional Convection-Diffusion Problem; 7.4.1 Grid Generation; 7.4.2 Solution Procedure of Convection-Diffusion Problem; References; Chapter 8 Boundary Element Method; 8.1 Introduction; 8.2 Boundary Representation and Background Theory of BEM; 8.2.1 Linear Differential Operator; 8.2.2 The Fundamental Solution 
505 8 |a 8.2.2.1 Heaviside Function8.2.2.2 Dirac Delta Function; 8.2.2.3 Finding the Fundamental Solution; 8.2.3 Green's Function; 8.2.3.1 Green's Integral Formula; 8.3 Derivation of the Boundary Element Method; 8.3.1 BEM Algorithm; References; Chapter 9 Akbari-Ganji's Method; 9.1 Introduction; 9.2 Nonlinear Ordinary Differential Equations; 9.2.1 Preliminaries; 9.2.2 AGM Approach; 9.3 Numerical Examples; 9.3.1 Unforced Nonlinear Differential Equations; 9.3.2 Forced Nonlinear Differential Equation; References; Chapter 10 Exp-Function Method; 10.1 Introduction; 10.2 Basics of Exp-Function Method 
520 |a Examines numerical and semi-analytical methods for differential equations that can be used for solving practical ODEs and PDEs This student-friendly book deals with various approaches for solving differential equations numerically or semi-analytically depending on the type of equations and offers simple example problems to help readers along. Featuring both traditional and recent methods, Advanced Numerical and Semi Analytical Methods for Differential Equations begins with a review of basic numerical methods. It then looks at Laplace, Fourier, and weighted residual methods for solving differential equations. A new challenging method of Boundary Characteristics Orthogonal Polynomials (BCOPs) is introduced next. The book then discusses Finite Difference Method (FDM), Finite Element Method (FEM), Finite Volume Method (FVM), and Boundary Element Method (BEM). Following that, analytical/semi analytic methods like Akbari Ganji's Method (AGM) and Exp-function are used to solve nonlinear differential equations. Nonlinear differential equations using semi-analytical methods are also addressed, namely Adomian Decomposition Method (ADM), Homotopy Perturbation Method (HPM), Variational Iteration Method (VIM), and Homotopy Analysis Method (HAM). Other topics covered include: emerging areas of research related to the solution of differential equations based on differential quadrature and wavelet approach; combined and hybrid methods for solving differential equations; as well as an overview of fractal differential equations. Further, uncertainty in term of intervals and fuzzy numbers have also been included, along with the interval finite element method. This book: Discusses various methods for solving linear and nonlinear ODEs and PDEs Covers basic numerical techniques for solving differential equations along with various discretization methods Investigates nonlinear differential equations using semi-analytical methods Examines differential equations in an uncertain environment Includes a new scenario in which uncertainty (in term of intervals and fuzzy numbers) has been included in differential equations Contains solved example problems, as well as some unsolved problems for self-validation of the topics covered Advanced Numerical and Semi Analytical Methods for Differential Equations is an excellent text for graduate as well as post graduate students and researchers studying various methods for solving differential equations, numerically and semi-analytically. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Differential equations  |x Numerical solutions. 
650 6 |a Équations différentielles  |x Solutions numériques. 
650 7 |a MATHEMATICS  |x Calculus.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Mathematical Analysis.  |2 bisacsh 
650 7 |a Differential equations  |2 fast 
700 1 |a Chakraverty, Snehashish,  |e author. 
758 |i has work:  |a Advanced Numerical and Semi-Analytical Methods for Differential Equations (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCXQTcvR3K44q4jvf7bDdDC  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |t Advanced numerical and semi analytical methods for differential equations  |d Hoboken, NJ : John Wiley & Sons, Inc., 2019  |z 9781119423423  |w (DLC) 2019000080 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=5741224  |z Texto completo 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781119423423/?ar  |z Texto completo 
938 |a IEEE  |b IEEE  |n 8689268 
938 |a YBP Library Services  |b YANK  |n 16129612 
938 |a YBP Library Services  |b YANK  |n 16161605 
938 |a Recorded Books, LLC  |b RECE  |n rbeEB00758214 
938 |a EBSCOhost  |b EBSC  |n 2091382 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL5741224 
938 |a Askews and Holts Library Services  |b ASKH  |n AH35581790 
994 |a 92  |b IZTAP