Algebraic Geometry and Commutative Algebra : In Honor of Masayoshi Nagata.
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Otros Autores: | , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Saint Louis :
Elsevier Science & Technology,
1989.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Front Cover; Algebraic Geometry and Commutative Algebra in Honor of Masayoshi NAGATA; Copyright Page; Foreword; Table of Contents of Volume II; Determinantal Loci and Enumerative Combinatorics of Young Tableaux; 1. Introduction; First Chapter. YOUNG TABLEAUX AND DETERMINANTAL POLYNOMIALS IN BINOMIAL COEFFICIENTS; 2. Tableaux and monomials; 3. Determinantal polynomials of any width; 4. Determinantal polynomials of width two; Second Chapter. ENUMERATION OF YOUNG TABLEAUX; 5. Counting tableaux of any width; 6. Bitableaux; 7. Counting bitableaux; 8. Counting monomials; 9. Bitableaux and monomials
- Third Chapter. UNIVERSAL DETERMINANTAL IDENTITY10. Preamble; 11. The mixed size case; 12. The cardinality condition; 13. The maximal size case; 14. The basic case; 15. Laplace development; 16. The full depth case; 17. Deduction of the full depth case; 18. The straightening law; 19. Problem; Fourth Chapter. APPLICATIONS TO IDEAL THEORY; 20. Determinantal loci; 21. Vector spaces and homogeneous rings; 22. Standard basis; 23. Second fundamental theorem of invariant theory; 24. Generalized second fundamental theorem of invariant theory; References
- A Conjecture of Sharp -The Case of Local Rings with dim non CM ≤ 1 or dim ≤ 51. Introduction; 2. Sharp's Conjecture; 3. Proofs of Theorem 1.1 and Theorem 1.2; References; A Structure Theorem for Power Series Rings; 1. We suppose that there is given a commutative diagram; 2. We may replace B by C = R[X,Y]/(f1,...„fm); 3.; 4. Proof of the Theorem; 5. Corollary; References; On Rational Plane Sextics with Six Tritangents Wolf BARTH* and Ross MOORE; 0. Introduction; 1. Some Polynomials; 2. The sextic space curve S; 3. The projected curves Sx; 4. The double plane X; 5. The double plane Y; 6. Moduli