|
|
|
|
LEADER |
00000cam a2200000Mi 4500 |
001 |
EBOOKCENTRAL_on1090493864 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr |n|---||||| |
008 |
190323s1989 mou o 000 0 eng d |
040 |
|
|
|a EBLCP
|b eng
|e pn
|c EBLCP
|d MERUC
|d OCLCQ
|d REDDC
|d OCLCF
|d K6U
|d OCLCQ
|d OCLCO
|d OCLCL
|
066 |
|
|
|c (S
|
020 |
|
|
|a 9781483265186
|
020 |
|
|
|a 1483265188
|
035 |
|
|
|a (OCoLC)1090493864
|
050 |
|
4 |
|a QA564.A444 1988eb
|
082 |
0 |
4 |
|a 516.35
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Hijikata, Hiroaki.
|
245 |
1 |
0 |
|a Algebraic Geometry and Commutative Algebra :
|b In Honor of Masayoshi Nagata.
|
260 |
|
|
|a Saint Louis :
|b Elsevier Science & Technology,
|c 1989.
|
300 |
|
|
|a 1 online resource (417 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|a Front Cover; Algebraic Geometry and Commutative Algebra in Honor of Masayoshi NAGATA; Copyright Page; Foreword; Table of Contents of Volume II; Determinantal Loci and Enumerative Combinatorics of Young Tableaux; 1. Introduction; First Chapter. YOUNG TABLEAUX AND DETERMINANTAL POLYNOMIALS IN BINOMIAL COEFFICIENTS; 2. Tableaux and monomials; 3. Determinantal polynomials of any width; 4. Determinantal polynomials of width two; Second Chapter. ENUMERATION OF YOUNG TABLEAUX; 5. Counting tableaux of any width; 6. Bitableaux; 7. Counting bitableaux; 8. Counting monomials; 9. Bitableaux and monomials
|
505 |
8 |
|
|a Third Chapter. UNIVERSAL DETERMINANTAL IDENTITY10. Preamble; 11. The mixed size case; 12. The cardinality condition; 13. The maximal size case; 14. The basic case; 15. Laplace development; 16. The full depth case; 17. Deduction of the full depth case; 18. The straightening law; 19. Problem; Fourth Chapter. APPLICATIONS TO IDEAL THEORY; 20. Determinantal loci; 21. Vector spaces and homogeneous rings; 22. Standard basis; 23. Second fundamental theorem of invariant theory; 24. Generalized second fundamental theorem of invariant theory; References
|
505 |
8 |
|
|a A Conjecture of Sharp -The Case of Local Rings with dim non CM ≤ 1 or dim ≤ 51. Introduction; 2. Sharp's Conjecture; 3. Proofs of Theorem 1.1 and Theorem 1.2; References; A Structure Theorem for Power Series Rings; 1. We suppose that there is given a commutative diagram; 2. We may replace B by C = R[X,Y]/(f1,...„fm); 3.; 4. Proof of the Theorem; 5. Corollary; References; On Rational Plane Sextics with Six Tritangents Wolf BARTH* and Ross MOORE; 0. Introduction; 1. Some Polynomials; 2. The sextic space curve S; 3. The projected curves Sx; 4. The double plane X; 5. The double plane Y; 6. Moduli
|
500 |
|
|
|a 13. Proof of Theorem 2
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
650 |
|
0 |
|a Geometry, Algebraic
|x Data processing.
|
650 |
|
6 |
|a Géométrie algébrique
|x Informatique.
|
650 |
|
7 |
|a Geometry, Algebraic
|x Data processing
|2 fast
|
700 |
1 |
|
|a Hironaka, Heisuke.
|
700 |
1 |
|
|a Maruyama, Masaki.
|
758 |
|
|
|i has work:
|a Algebraic geometry and commutative algebra Vol. II (Text)
|1 https://id.oclc.org/worldcat/entity/E39PCFVfgW9RbpjcTYQvHT4yVC
|4 https://id.oclc.org/worldcat/ontology/hasWork
|
776 |
0 |
8 |
|i Print version:
|a Hijikata, Hiroaki.
|t Algebraic Geometry and Commutative Algebra : In Honor of Masayoshi Nagata.
|d Saint Louis : Elsevier Science & Technology, ©1989
|z 9780123480316
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=5093682
|z Texto completo
|
880 |
8 |
|
|6 505-00/(S
|a 7. ExplanationsReferences; On Rings of Invariants of Finite Linear Groups; 1. Fundamental groups; 2. Proof of Theorem A; 3. Additional results; References; Invariant Differentials; 1. Introduction; 2. Use of the étale slice theorem; 3. The ñnite group case; References; Classification of Polarized Manifoldsof Sectional Genus Two; Introduction; Notation, Convention and Terminology; 1. Classification, first step; 2. The case K ~ (3 -- n)L; 3. The case of a hyperquadric fíbration over a curve; 4. Polarized surfaces of sectional genus two; Appendix; References; Affine Surfaces with κ ≤ 1
|
880 |
8 |
|
|6 505-00/(S
|a Introduction1. Surfaces with K = -∞; 2. The case K{S) = 0; 3. The case K{S) = 1; 4. Examples K{S) = 2; References; On the Convolution Algebra of Distributionson Totally Disconnected Locally Compact Groups; 0. Introduction; 1. Finite w-distribution; 2. Action of homeomorphisms and multiplication by functions; 3. Generators of S(X, w; V); 4. Action of Τ on vector valued functions; 5. Tensor product of distributions; 6. Convolution; 7. Representation of G; 8. Regular representation; 9. Projection operator; 10. D-modules and S.-modules; 11. D-modules and ε-modules; 12. Proof of Theorem 1
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL5093682
|
994 |
|
|
|a 92
|b IZTAP
|