Cargando…

Algebraic Geometry and Commutative Algebra : In Honor of Masayoshi Nagata.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Hijikata, Hiroaki
Otros Autores: Hironaka, Heisuke, Maruyama, Masaki
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Saint Louis : Elsevier Science & Technology, 1989.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mi 4500
001 EBOOKCENTRAL_on1090493864
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |n|---|||||
008 190323s1989 mou o 000 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d MERUC  |d OCLCQ  |d REDDC  |d OCLCF  |d K6U  |d OCLCQ  |d OCLCO  |d OCLCL 
066 |c (S 
020 |a 9781483265186 
020 |a 1483265188 
035 |a (OCoLC)1090493864 
050 4 |a QA564.A444 1988eb 
082 0 4 |a 516.35 
049 |a UAMI 
100 1 |a Hijikata, Hiroaki. 
245 1 0 |a Algebraic Geometry and Commutative Algebra :  |b In Honor of Masayoshi Nagata. 
260 |a Saint Louis :  |b Elsevier Science & Technology,  |c 1989. 
300 |a 1 online resource (417 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Print version record. 
505 0 |a Front Cover; Algebraic Geometry and Commutative Algebra in Honor of Masayoshi NAGATA; Copyright Page; Foreword; Table of Contents of Volume II; Determinantal Loci and Enumerative Combinatorics of Young Tableaux; 1. Introduction; First Chapter. YOUNG TABLEAUX AND DETERMINANTAL POLYNOMIALS IN BINOMIAL COEFFICIENTS; 2. Tableaux and monomials; 3. Determinantal polynomials of any width; 4. Determinantal polynomials of width two; Second Chapter. ENUMERATION OF YOUNG TABLEAUX; 5. Counting tableaux of any width; 6. Bitableaux; 7. Counting bitableaux; 8. Counting monomials; 9. Bitableaux and monomials 
505 8 |a Third Chapter. UNIVERSAL DETERMINANTAL IDENTITY10. Preamble; 11. The mixed size case; 12. The cardinality condition; 13. The maximal size case; 14. The basic case; 15. Laplace development; 16. The full depth case; 17. Deduction of the full depth case; 18. The straightening law; 19. Problem; Fourth Chapter. APPLICATIONS TO IDEAL THEORY; 20. Determinantal loci; 21. Vector spaces and homogeneous rings; 22. Standard basis; 23. Second fundamental theorem of invariant theory; 24. Generalized second fundamental theorem of invariant theory; References 
505 8 |a A Conjecture of Sharp -The Case of Local Rings with dim non CM ≤ 1 or dim ≤ 51. Introduction; 2. Sharp's Conjecture; 3. Proofs of Theorem 1.1 and Theorem 1.2; References; A Structure Theorem for Power Series Rings; 1. We suppose that there is given a commutative diagram; 2. We may replace B by C = R[X,Y]/(f1,...„fm); 3.; 4. Proof of the Theorem; 5. Corollary; References; On Rational Plane Sextics with Six Tritangents Wolf BARTH* and Ross MOORE; 0. Introduction; 1. Some Polynomials; 2. The sextic space curve S; 3. The projected curves Sx; 4. The double plane X; 5. The double plane Y; 6. Moduli 
500 |a 13. Proof of Theorem 2 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Geometry, Algebraic  |x Data processing. 
650 6 |a Géométrie algébrique  |x Informatique. 
650 7 |a Geometry, Algebraic  |x Data processing  |2 fast 
700 1 |a Hironaka, Heisuke. 
700 1 |a Maruyama, Masaki. 
758 |i has work:  |a Algebraic geometry and commutative algebra Vol. II (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCFVfgW9RbpjcTYQvHT4yVC  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Hijikata, Hiroaki.  |t Algebraic Geometry and Commutative Algebra : In Honor of Masayoshi Nagata.  |d Saint Louis : Elsevier Science & Technology, ©1989  |z 9780123480316 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=5093682  |z Texto completo 
880 8 |6 505-00/(S  |a 7. ExplanationsReferences; On Rings of Invariants of Finite Linear Groups; 1. Fundamental groups; 2. Proof of Theorem A; 3. Additional results; References; Invariant Differentials; 1. Introduction; 2. Use of the étale slice theorem; 3. The ñnite group case; References; Classification of Polarized Manifoldsof Sectional Genus Two; Introduction; Notation, Convention and Terminology; 1. Classification, first step; 2. The case K ~ (3 -- n)L; 3. The case of a hyperquadric fíbration over a curve; 4. Polarized surfaces of sectional genus two; Appendix; References; Affine Surfaces with κ ≤ 1 
880 8 |6 505-00/(S  |a Introduction1. Surfaces with K = -∞; 2. The case K{S) = 0; 3. The case K{S) = 1; 4. Examples K{S) = 2; References; On the Convolution Algebra of Distributionson Totally Disconnected Locally Compact Groups; 0. Introduction; 1. Finite w-distribution; 2. Action of homeomorphisms and multiplication by functions; 3. Generators of S(X, w; V); 4. Action of Τ on vector valued functions; 5. Tensor product of distributions; 6. Convolution; 7. Representation of G; 8. Regular representation; 9. Projection operator; 10. D-modules and S.-modules; 11. D-modules and ε-modules; 12. Proof of Theorem 1 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL5093682 
994 |a 92  |b IZTAP