|
|
|
|
LEADER |
00000cam a2200000Mi 4500 |
001 |
EBOOKCENTRAL_on1089986481 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr |n|---||||| |
008 |
190316s2019 nju o 000 0 eng d |
040 |
|
|
|a EBLCP
|b eng
|e pn
|c EBLCP
|d COO
|d OCLCQ
|d VT2
|d LOA
|d OCLCO
|d K6U
|d OCLCF
|d SGP
|d OCLCO
|d OCLCQ
|d OCLCO
|
019 |
|
|
|a 1104316702
|a 1104400506
|
020 |
|
|
|a 9781119597575
|
020 |
|
|
|a 1119597579
|
020 |
|
|
|a 9781786303820
|
020 |
|
|
|a 1786303825
|
029 |
1 |
|
|a AU@
|b 000065126786
|
035 |
|
|
|a (OCoLC)1089986481
|z (OCoLC)1104316702
|z (OCoLC)1104400506
|
050 |
|
4 |
|a QA76.9.Q36
|b .D383 2019
|
082 |
0 |
4 |
|a 001.42
|2 23
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Skiadas, Christos.
|
245 |
1 |
0 |
|a Data Analysis and Applications 1 :
|b New and Classical Approaches.
|
260 |
|
|
|a Newark :
|b John Wiley & Sons, Incorporated,
|c 2019.
|
300 |
|
|
|a 1 online resource (291 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|a Cover; Half-Title Page; Title Page; Copyright Page; Contents; Preface; Introduction: 50 Years of Data Analysis: From Exploratory Data Analysis to Predictive Modeling and Machine Learning; I.1. The revolt against mathematical statistics; I.2. EDA and unsupervised methods for dimension reduction; I.2.1. The time of syntheses; I.2.2. The time of clusterwise methods; I.2.3. Extensions to new types of data; I.2.4. Nonlinear data analysis; I.2.5. The time of sparse methods; I.3. Predictive modeling; I.3.1. Paradigms and paradoxes; I.3.2. From statistical learning theory to empirical validation
|
505 |
8 |
|
|a I.3.3. ChallengesI. 4. Conclusion; I.5. References; PART 1: Clustering and Regression; 1. Cluster Validation by Measurement of Clustering Characteristics Relevant to the User; 1.1. Introduction; 1.2. General notation; 1.3. Aspects of cluster validity; 1.3.1. Small within-cluster dissimilarities; 1.3.2. Between-cluster separation; 1.3.3. Representation of objects by centroids; 1.3.4. Representation of dissimilarity structure by clustering; 1.3.5. Small within-cluster gaps; 1.3.6. Density modes and valleys; 1.3.7. Uniform within-cluster density; 1.3.8. Entropy; 1.3.9. Parsimony
|
505 |
8 |
|
|a 1.3.10. Similarity to homogeneous distributional shapes1.3.11. Stability; 1.3.12. Further Aspects; 1.4. Aggregation of indexes; 1.5. Random clusterings for calibrating indexes; 1.5.1. Stupid K-centroids clustering; 1.5.2. Stupid nearest neighbors clustering; 1.5.3. Calibration; 1.6. Examples; 1.6.1. Artificial data set; 1.6.2. Tetragonula bees data; 1.7. Conclusion; 1.8. Acknowledgment; 1.9. References; 2. Histogram-Based Clustering of Sensor Network Data; 2.1. Introduction; 2.2. Time series data stream clustering; 2.2.1. Local clustering of histogram data
|
505 |
8 |
|
|a 2.2.2. Online proximity matrix updating2.2.3. Off-line partitioning through the dynamic clustering algorithm for dissimilarity tables; 2.3. Results on real data; 2.4. Conclusions; 2.5. References; 3. The Flexible Beta Regression Model; 3.1. Introduction; 3.2. The FB distribution; 3.2.1. The beta distribution; 3.2.2. The FB distribution; 3.2.3. Reparameterization of the FB; 3.3. The FB regression model; 3.4. Bayesian inference; 3.5. Illustrative application; 3.6. Conclusion; 3.7. References; 4. S-weighted Instrumental Variables; 4.1. Summarizing the previous relevant results
|
505 |
8 |
|
|a 4.2. The notations, framework, conditions and main tool4.3. S-weighted estimator and its consistency; 4.4. S-weighted instrumental variables and their consistency; 4.5. Patterns of results of simulations; 4.5.1. Generating the data; 4.5.2. Reporting the results; 4.6. Acknowledgment; 4.7. References; PART 2: Models and Modeling; 5. Grouping Property and Decomposition of Explained Variance in Linear Regression; 5.1. Introduction; 5.2. CAR scores; 5.2.1. Definition and estimators; 5.2.2. Historical criticism of the CAR scores; 5.3. Variance decomposition methods and SVD
|
500 |
|
|
|a 5.4. Grouping property of variance decomposition methods
|
520 |
|
|
|a "This series of books collects a diverse array of work that provides the reader with theoretical and applied information on data analysis methods, models, and techniques, along with appropriate applications. Volume 1 begins with an introductory chapter by Gilbert Saporta, a leading expert in the field, who summarizes the developments in data analysis over the last 50 years. The book is then divided into three parts: Part 1 presents clustering and regression cases; Part 2 examines grouping and decomposition, GARCH and threshold models, structural equations, and SME modeling; and Part 3 presents symbolic data analysis, time series and multiple choice models, modeling in demography, and data mining."--
|c Provided by publisher.
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
650 |
|
0 |
|a Quantitative research.
|
650 |
|
4 |
|a Forecasting.
|
650 |
|
4 |
|a Regression Analysis.
|
650 |
|
4 |
|a Data Mining.
|
650 |
|
4 |
|a Social Science
|x Future Studies.
|
650 |
|
4 |
|a Mathematics
|x Probability & Statistics
|x Regression Analysis.
|
650 |
|
4 |
|a Computers
|x Data Science
|x Data Analytics.
|
650 |
|
6 |
|a Recherche quantitative.
|
650 |
|
7 |
|a Quantitative research
|2 fast
|
700 |
1 |
|
|a Bozeman, James R.
|
776 |
0 |
8 |
|i Print version:
|a Skiadas, Christos.
|t Data Analysis and Applications 1 : New and Classical Approaches.
|d Newark : John Wiley & Sons, Incorporated, ©2019
|z 9781786303820
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=5724037
|z Texto completo
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL5724037
|
994 |
|
|
|a 92
|b IZTAP
|