Cargando…

Data Analysis and Applications 1 : New and Classical Approaches.

"This series of books collects a diverse array of work that provides the reader with theoretical and applied information on data analysis methods, models, and techniques, along with appropriate applications. Volume 1 begins with an introductory chapter by Gilbert Saporta, a leading expert in th...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Skiadas, Christos
Otros Autores: Bozeman, James R.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Newark : John Wiley & Sons, Incorporated, 2019.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mi 4500
001 EBOOKCENTRAL_on1089986481
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |n|---|||||
008 190316s2019 nju o 000 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d COO  |d OCLCQ  |d VT2  |d LOA  |d OCLCO  |d K6U  |d OCLCF  |d SGP  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 1104316702  |a 1104400506 
020 |a 9781119597575 
020 |a 1119597579 
020 |a 9781786303820 
020 |a 1786303825 
029 1 |a AU@  |b 000065126786 
035 |a (OCoLC)1089986481  |z (OCoLC)1104316702  |z (OCoLC)1104400506 
050 4 |a QA76.9.Q36  |b .D383 2019 
082 0 4 |a 001.42  |2 23 
049 |a UAMI 
100 1 |a Skiadas, Christos. 
245 1 0 |a Data Analysis and Applications 1 :  |b New and Classical Approaches. 
260 |a Newark :  |b John Wiley & Sons, Incorporated,  |c 2019. 
300 |a 1 online resource (291 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Print version record. 
505 0 |a Cover; Half-Title Page; Title Page; Copyright Page; Contents; Preface; Introduction: 50 Years of Data Analysis: From Exploratory Data Analysis to Predictive Modeling and Machine Learning; I.1. The revolt against mathematical statistics; I.2. EDA and unsupervised methods for dimension reduction; I.2.1. The time of syntheses; I.2.2. The time of clusterwise methods; I.2.3. Extensions to new types of data; I.2.4. Nonlinear data analysis; I.2.5. The time of sparse methods; I.3. Predictive modeling; I.3.1. Paradigms and paradoxes; I.3.2. From statistical learning theory to empirical validation 
505 8 |a I.3.3. ChallengesI. 4. Conclusion; I.5. References; PART 1: Clustering and Regression; 1. Cluster Validation by Measurement of Clustering Characteristics Relevant to the User; 1.1. Introduction; 1.2. General notation; 1.3. Aspects of cluster validity; 1.3.1. Small within-cluster dissimilarities; 1.3.2. Between-cluster separation; 1.3.3. Representation of objects by centroids; 1.3.4. Representation of dissimilarity structure by clustering; 1.3.5. Small within-cluster gaps; 1.3.6. Density modes and valleys; 1.3.7. Uniform within-cluster density; 1.3.8. Entropy; 1.3.9. Parsimony 
505 8 |a 1.3.10. Similarity to homogeneous distributional shapes1.3.11. Stability; 1.3.12. Further Aspects; 1.4. Aggregation of indexes; 1.5. Random clusterings for calibrating indexes; 1.5.1. Stupid K-centroids clustering; 1.5.2. Stupid nearest neighbors clustering; 1.5.3. Calibration; 1.6. Examples; 1.6.1. Artificial data set; 1.6.2. Tetragonula bees data; 1.7. Conclusion; 1.8. Acknowledgment; 1.9. References; 2. Histogram-Based Clustering of Sensor Network Data; 2.1. Introduction; 2.2. Time series data stream clustering; 2.2.1. Local clustering of histogram data 
505 8 |a 2.2.2. Online proximity matrix updating2.2.3. Off-line partitioning through the dynamic clustering algorithm for dissimilarity tables; 2.3. Results on real data; 2.4. Conclusions; 2.5. References; 3. The Flexible Beta Regression Model; 3.1. Introduction; 3.2. The FB distribution; 3.2.1. The beta distribution; 3.2.2. The FB distribution; 3.2.3. Reparameterization of the FB; 3.3. The FB regression model; 3.4. Bayesian inference; 3.5. Illustrative application; 3.6. Conclusion; 3.7. References; 4. S-weighted Instrumental Variables; 4.1. Summarizing the previous relevant results 
505 8 |a 4.2. The notations, framework, conditions and main tool4.3. S-weighted estimator and its consistency; 4.4. S-weighted instrumental variables and their consistency; 4.5. Patterns of results of simulations; 4.5.1. Generating the data; 4.5.2. Reporting the results; 4.6. Acknowledgment; 4.7. References; PART 2: Models and Modeling; 5. Grouping Property and Decomposition of Explained Variance in Linear Regression; 5.1. Introduction; 5.2. CAR scores; 5.2.1. Definition and estimators; 5.2.2. Historical criticism of the CAR scores; 5.3. Variance decomposition methods and SVD 
500 |a 5.4. Grouping property of variance decomposition methods 
520 |a "This series of books collects a diverse array of work that provides the reader with theoretical and applied information on data analysis methods, models, and techniques, along with appropriate applications. Volume 1 begins with an introductory chapter by Gilbert Saporta, a leading expert in the field, who summarizes the developments in data analysis over the last 50 years. The book is then divided into three parts: Part 1 presents clustering and regression cases; Part 2 examines grouping and decomposition, GARCH and threshold models, structural equations, and SME modeling; and Part 3 presents symbolic data analysis, time series and multiple choice models, modeling in demography, and data mining."--  |c Provided by publisher. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Quantitative research. 
650 4 |a Forecasting. 
650 4 |a Regression Analysis. 
650 4 |a Data Mining. 
650 4 |a Social Science  |x Future Studies. 
650 4 |a Mathematics  |x Probability & Statistics  |x Regression Analysis. 
650 4 |a Computers  |x Data Science  |x Data Analytics. 
650 6 |a Recherche quantitative. 
650 7 |a Quantitative research  |2 fast 
700 1 |a Bozeman, James R. 
776 0 8 |i Print version:  |a Skiadas, Christos.  |t Data Analysis and Applications 1 : New and Classical Approaches.  |d Newark : John Wiley & Sons, Incorporated, ©2019  |z 9781786303820 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=5724037  |z Texto completo 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL5724037 
994 |a 92  |b IZTAP