Optimal Control in Bioprocesses : Pontryagin's Maximum Principle in Practice.
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Otros Autores: | , , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Somerset :
John Wiley & Sons, Incorporated,
2019.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Cover; Half-Title Page; Title Page; Copyright Page; Contents; Introduction; PART 1: Learning to use Pontryagin's Maximum Principle; 1. The Classical Calculus of Variations; 1.1. Introduction: notations; 1.2. Minimizing a function; 1.2.1. Minimum of a function of one variable; 1.2.2. Minimum of a function of two variables; 1.3. Minimization of a functional: Euler-Lagrange equations; 1.3.1. The problem; 1.3.2. The differential of J; 1.3.3. Examples; 1.4. Hamilton's equations; 1.4.1. Hamilton's classical equations
- 1.4.2. The limitations of classical calculus of variations and small steps toward the control theory1.5. Historical and bibliographic observations; 2. Optimal Control; 2.1. The vocabulary of optimal control theory; 2.1.1. Controls and responses; 2.1.2. Class of regular controls; 2.1.3. Reachable states; 2.1.4. Controllability; 2.1.5. Optimal control; 2.1.6. Existence of a minimum; 2.1.7. Optimization and reachable states; 2.2. Statement of Pontryagin's maximum principle; 2.2.1. PMP for the "canonical" problem; 2.2.2. PMP for an integral cost; 2.2.3. The PMP for the minimum-time problem
- 2.2.4. PMP in fixed terminal time and integral cost2.2.5. PMP for a non-punctual target; 2.3. PMP without terminal constraint; 2.3.1. Statement; 2.3.2. Corollary; 2.3.3. Dynamic programming and interpretation of the adjoint vector; 3. Applications; 3.1. Academic examples (to facilitate understanding); 3.1.1. The driver in a hurry; 3.1.2. Profile of a road; 3.1.3. Controlling the harmonic oscillator: the swing (problem); 3.1.4. The Fuller phenomenon; 3.2. Regular problems; 3.2.1. A regular Hamiltonian and the associated shooting method
- 3.2.2. The geodesic problem (seen as a minimum-time problem)3.2.3. Regularization of the problem of the driver in a hurry; 3.3. Non-regular problems and singular arcs; 3.3.1. Optimal fishing problem; 3.3.2. Discontinuous value function: the Zermelo navigation problem; 3.4. Synthesis of the optimal control, discontinuity of the value function, singular arcs and feedback; 3.5. Historical and bibliographic observations; PART 2: Applications in Process Engineering; 4. Optimal Filling of a Batch Reactor; 4.1. Reducing the problem; 4.2. Comparison with Bang-Bang policies