Covering dimension of C*-algebras and 2-coloured classification /
The authors introduce the concept of finitely coloured equivalence for unital ^*-homomorphisms between \mathrm C^*-algebras, for which unitary equivalence is the 1-coloured case. They use this notion to classify ^*-homomorphisms from separable, unital, nuclear \mathrm C^*-algebras into ultrapowers o...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Providence, RI :
American Mathematical Society,
2019.
|
Colección: | Memoirs of the American Mathematical Society ;
no. 1233. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Cover; Title page; Introduction; From classification to nuclear dimension; Outline of the proof of Theorem D; Structure of the paper; Acknowledgements; Chapter 1. Preliminaries; 1.1. Order zero maps; 1.2. Traces and Cuntz comparison; 1.3. Ultraproducts and the reindexing argument; Chapter 2. A 2 x 2 matrix trick; Chapter 3. Ultrapowers of trivial *-bundles; 3.1. Continuous *-bundles; 3.2. Tensor products, ultraproducts and McDuff bundles; 3.3. Strict comparison of relative commutant sequence algebras for McDuff bundles; 3.4. Traces on a relative commutant
- 3.5. Unitary equivalence of maps into ultraproductsChapter 4. Property (SI) and its consequences; 4.1. Property (SI); 4.2. Proof of Theorem 4.1; Chapter 5. Unitary equivalence of totally full positive elements; 5.1. Proof of Theorem 5.1; 5.2. Theorem D; Chapter 6. 2-coloured equivalence; Chapter 7. Nuclear dimension and decomposition rank; Chapter 8. Quasidiagonal traces; Chapter 9. Kirchberg algebras; Addendum; Bibliography; Back Cover