Cargando…

Covering dimension of C*-algebras and 2-coloured classification /

The authors introduce the concept of finitely coloured equivalence for unital ^*-homomorphisms between \mathrm C^*-algebras, for which unitary equivalence is the 1-coloured case. They use this notion to classify ^*-homomorphisms from separable, unital, nuclear \mathrm C^*-algebras into ultrapowers o...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Bosa, Joan, 1985- (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Providence, RI : American Mathematical Society, 2019.
Colección:Memoirs of the American Mathematical Society ; no. 1233.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Cover; Title page; Introduction; From classification to nuclear dimension; Outline of the proof of Theorem D; Structure of the paper; Acknowledgements; Chapter 1. Preliminaries; 1.1. Order zero maps; 1.2. Traces and Cuntz comparison; 1.3. Ultraproducts and the reindexing argument; Chapter 2. A 2 x 2 matrix trick; Chapter 3. Ultrapowers of trivial *-bundles; 3.1. Continuous *-bundles; 3.2. Tensor products, ultraproducts and McDuff bundles; 3.3. Strict comparison of relative commutant sequence algebras for McDuff bundles; 3.4. Traces on a relative commutant
  • 3.5. Unitary equivalence of maps into ultraproductsChapter 4. Property (SI) and its consequences; 4.1. Property (SI); 4.2. Proof of Theorem 4.1; Chapter 5. Unitary equivalence of totally full positive elements; 5.1. Proof of Theorem 5.1; 5.2. Theorem D; Chapter 6. 2-coloured equivalence; Chapter 7. Nuclear dimension and decomposition rank; Chapter 8. Quasidiagonal traces; Chapter 9. Kirchberg algebras; Addendum; Bibliography; Back Cover