Cargando…

Covering dimension of C*-algebras and 2-coloured classification /

The authors introduce the concept of finitely coloured equivalence for unital ^*-homomorphisms between \mathrm C^*-algebras, for which unitary equivalence is the 1-coloured case. They use this notion to classify ^*-homomorphisms from separable, unital, nuclear \mathrm C^*-algebras into ultrapowers o...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Bosa, Joan, 1985- (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Providence, RI : American Mathematical Society, 2019.
Colección:Memoirs of the American Mathematical Society ; no. 1233.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBOOKCENTRAL_on1084978657
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |n|||||||||
008 190208t20192019riua ob 000 0 eng d
040 |a UIU  |b eng  |e rda  |e pn  |c UIU  |d COO  |d YDX  |d N$T  |d EBLCP  |d COD  |d OCLCO  |d OCLCQ  |d UKAHL  |d OCLCQ  |d K6U  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL  |d S9M  |d OCLCL 
020 |a 1470449498 
020 |a 9781470449490  |q (electronic bk.) 
020 |z 9781470434700  |q (alk. paper) 
020 |z 1470434709  |q (alk. paper) 
029 1 |a AU@  |b 000065113250 
035 |a (OCoLC)1084978657 
050 4 |a QC20.7.C14  |b C68 2019 
072 7 |a MAT  |x 002040  |2 bisacsh 
082 0 4 |a 512/.556  |2 23 
049 |a UAMI 
245 0 0 |a Covering dimension of C*-algebras and 2-coloured classification /  |c Joan Bosa [and five others]. 
264 1 |a Providence, RI :  |b American Mathematical Society,  |c 2019. 
264 4 |c ©2019 
300 |a 1 online resource (vii, 97 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Memoirs of the American Mathematical Society,  |x 0065-9266 ;  |v volume 257, number 1233 
504 |a Includes bibliographical references (pages 93-97) 
588 0 |a Print version record. 
500 |a "January 2019, Volume 257, Number 1233 (third of 6 numbers)." 
505 0 |a Cover; Title page; Introduction; From classification to nuclear dimension; Outline of the proof of Theorem D; Structure of the paper; Acknowledgements; Chapter 1. Preliminaries; 1.1. Order zero maps; 1.2. Traces and Cuntz comparison; 1.3. Ultraproducts and the reindexing argument; Chapter 2. A 2 x 2 matrix trick; Chapter 3. Ultrapowers of trivial *-bundles; 3.1. Continuous *-bundles; 3.2. Tensor products, ultraproducts and McDuff bundles; 3.3. Strict comparison of relative commutant sequence algebras for McDuff bundles; 3.4. Traces on a relative commutant 
505 8 |a 3.5. Unitary equivalence of maps into ultraproductsChapter 4. Property (SI) and its consequences; 4.1. Property (SI); 4.2. Proof of Theorem 4.1; Chapter 5. Unitary equivalence of totally full positive elements; 5.1. Proof of Theorem 5.1; 5.2. Theorem D; Chapter 6. 2-coloured equivalence; Chapter 7. Nuclear dimension and decomposition rank; Chapter 8. Quasidiagonal traces; Chapter 9. Kirchberg algebras; Addendum; Bibliography; Back Cover 
520 |a The authors introduce the concept of finitely coloured equivalence for unital ^*-homomorphisms between \mathrm C^*-algebras, for which unitary equivalence is the 1-coloured case. They use this notion to classify ^*-homomorphisms from separable, unital, nuclear \mathrm C^*-algebras into ultrapowers of simple, unital, nuclear, \mathcal Z-stable \mathrm C^*-algebras with compact extremal trace space up to 2-coloured equivalence by their behaviour on traces; this is based on a 1-coloured classification theorem for certain order zero maps, also in terms of tracial data. As an application [they] calculate the nuclear dimension of non-AF, simple, sep-arable, unital, nuclear, Z-stable C∗-algebras with compact extremal trace space: it is 1. In the case that the extremal trace space also has finite topological covering dimension, this confirms the remaining open implication of the Toms-Winter conjecture. Inspired by homotopy-rigidity theorems in geometry and topology, [they] derive a "homotopy equivalence implies isomorphism" result for large classes of C∗-algebras with finite nuclear dimension. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a C*-algebras. 
650 0 |a Homomorphisms (Mathematics) 
650 0 |a Extremal problems (Mathematics) 
650 6 |a C*-algèbres. 
650 6 |a Homomorphismes (Mathématiques) 
650 6 |a Problèmes extrémaux (Mathématiques) 
650 7 |a MATHEMATICS  |x Algebra  |x Intermediate.  |2 bisacsh 
650 7 |a Álgebra  |2 embne 
650 7 |a C*-algebras  |2 fast 
650 7 |a Extremal problems (Mathematics)  |2 fast 
650 7 |a Homomorphisms (Mathematics)  |2 fast 
700 1 |a Bosa, Joan,  |d 1985-  |e author.  |1 https://id.oclc.org/worldcat/entity/E39PCjthqjQV97fCWVVJdq6XFq 
758 |i has work:  |a Covering dimension of C*-algebras and 2-coloured classification (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCGYDfX4RCcyGYrf69Q3Xq3  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |t Covering dimension of C*-algebras and 2-coloured classification.  |d [Providence, Rhode Island] : American Mathematical Society, 2019  |z 9781470434700  |w (DLC) 2018053302  |w (OCoLC)1074297179 
830 0 |a Memoirs of the American Mathematical Society ;  |v no. 1233.  |x 0065-9266 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=5725359  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH37445227 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL5725359 
938 |a EBSCOhost  |b EBSC  |n 2042357 
938 |a YBP Library Services  |b YANK  |n 16094608 
994 |a 92  |b IZTAP