Cargando…

Continuous-Time Random Walks for the Numerical Solution of Stochastic Differential Equations

This paper introduces time-continuous numerical schemes to simulate stochastic differential equations (SDEs) arising in mathematical finance, population dynamics, chemical kinetics, epidemiology, biophysics, and polymeric fluids. These schemes are obtained by spatially discretizing the Kolmogorov eq...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Bou-Rabee, Nawaf
Otros Autores: Vanden-Eijnden, Eric
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Providence : American Mathematical Society, 2019.
Colección:Memoirs of the American Mathematical Society Ser.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mu 4500
001 EBOOKCENTRAL_on1083467362
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |n|---|||||
008 190126s2019 riu o 000 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d CHVBK  |d OCLCO  |d OCLCF  |d OCLCQ  |d LOA  |d K6U  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL 
020 |a 9781470449193 
020 |a 1470449196 
029 1 |a CHNEW  |b 001040068 
029 1 |a CHVBK  |b 559037325 
029 1 |a AU@  |b 000069468750 
035 |a (OCoLC)1083467362 
050 4 |a QA274.23  |b .B687 2018 
082 0 4 |a 519.2  |2 23 
049 |a UAMI 
100 1 |a Bou-Rabee, Nawaf. 
245 1 0 |a Continuous-Time Random Walks for the Numerical Solution of Stochastic Differential Equations 
260 |a Providence :  |b American Mathematical Society,  |c 2019. 
300 |a 1 online resource (136 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Memoirs of the American Mathematical Society Ser. ;  |v v. 256 
588 0 |a Print version record. 
505 0 |a Cover; Title page; Chapter 1. Introduction; 1.1. Motivation; 1.2. Main Results; 1.3. Relation to Other Works; 1.4. Organization of Paper; 1.5. Acknowledgements; Chapter 2. Algorithms; 2.1. Realizability Condition; 2.2. Gridded vs Gridless State Spaces; 2.3. Realizable Discretizations in 1D; 2.4. Realizable Discretizations in 2D; 2.5. Realizable Discretizations in nD; 2.6. Scaling of Approximation with System Size; 2.7. Generalization of Realizable Discretizations in nD; 2.8. Weakly Diagonally Dominant Case; Chapter 3. Examples & Applications; 3.1. Introduction 
505 8 |a 3.2. Cubic Oscillator in 1D with Additive Noise3.3. Asymptotic Analysis of Mean Holding Time; 3.4. Adaptive Mesh Refinement in 1D; 3.5. Log-normal Process in 1D with Multiplicative Noise; 3.6. Cox-Ingersoll-Ross Process in 1D with Multiplicative Noise; 3.7. SDEs in 2D with Additive Noise; 3.8. Adaptive Mesh Refinement in 2D; 3.9. Log-normal Process in 2D with Multiplicative Noise; 3.10. Lotka-Volterra Process in 2D with Multiplicative Noise; 3.11. Colloidal Cluster in 39D with Multiplicative Noise; Chapter 4. Analysis on Gridded State Spaces; 4.1. Assumptions 
505 8 |a 4.2. Stability by Stochastic Lyapunov Function4.3. Properties of Realizations; 4.4. Generator Accuracy; 4.5. Global Error Analysis; Chapter 5. Analysis on Gridless State Spaces; 5.1. A Random Walk in a Random Environment; 5.2. Generator Accuracy; 5.3. Stability by Stochastic Lyapunov Function; 5.4. Finite-Time Accuracy; 5.5. Feller Property; 5.6. Stationary Distribution Accuracy; Chapter 6. Tridiagonal Case; 6.1. Invariant Density; 6.2. Stationary Density Accuracy; 6.3. Exit Probability; 6.4. Mean First Passage Time; Chapter 7. Conclusion and Outlook; Bibliography; Back Cover 
520 |a This paper introduces time-continuous numerical schemes to simulate stochastic differential equations (SDEs) arising in mathematical finance, population dynamics, chemical kinetics, epidemiology, biophysics, and polymeric fluids. These schemes are obtained by spatially discretizing the Kolmogorov equation associated with the SDE in such a way that the resulting semi-discrete equation generates a Markov jump process that can be realized exactly using a Monte Carlo method. In this construction the jump size of the approximation can be bounded uniformly in space, which often guarantees that the s. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Stochastic differential equations  |x Numerical solutions. 
650 0 |a Random walks. 
650 6 |a Équations différentielles stochastiques  |x Solutions numériques. 
650 7 |a Stochastic differential equations  |x Numerical solutions  |2 fast 
700 1 |a Vanden-Eijnden, Eric. 
758 |i has work:  |a Continuous-time random walks for the numerical solution of stochastic differential equations (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCGtyPqRcCpQxpxM78gP3V3  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Bou-Rabee, Nawaf.  |t Continuous-Time Random Walks for the Numerical Solution of Stochastic Differential Equations.  |d Providence : American Mathematical Society, ©2019 
830 0 |a Memoirs of the American Mathematical Society Ser. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=5633666  |z Texto completo 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL5633666 
994 |a 92  |b IZTAP