Cargando…

Arithmetic Geometry

For thirty years, the biennial international conference AGC^2T (Arithmetic, Geometry, Cryptography, and Coding Theory) has brought researchers to Marseille to build connections between arithmetic geometry and its applications, originally highlighting coding theory but more recently including cryptog...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Aubry, Yves
Otros Autores: Howe, Everett W., Ritzenthaler, Christophe
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Providence : American Mathematical Society, 2019.
Colección:Contemporary Mathematics Ser.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Cover; Title page; Contents; Preface; Hasse-Witt and Cartier-Manin matrices: A warning and a request; Prologue; 1. Matrices and semilinear algebra; 2. Hasse-Witt and Cartier-Manin matrices; 3. Cartier-Manin matrices for hyperelliptic curves; 4. Hasse-Witt matrices through the ages; 5. Subsequent developments; 6. Conclusion; References; Works that cite Manin (1961) or Yui (1978); Analogues of Brauer-Siegel theorem in arithmetic geometry; Introduction; 1. Classical Brauer-Siegel theorems; 2. Zeta and -functions; 3. Abelian varieties and surfaces; 4. Generalisations
  • 5. Theorems and conjectures of Brauer-Siegel typeReferences; The Belyi degree of a curve is computable; 1. Introduction; Acknowledgements; 2. The Belyi degree; 3. First proof of Theorem 1.2; 4. Second proof of Theorem 1.2; 5. The Fermat curve of degree four; References; Weight enumerators of Reed-Muller codes from cubic curves and their duals; 1. Introduction; 2. Singular projective plane cubic curves; 3. Smooth projective plane cubic curves; 4. Low-weight coefficients of _{ _{2,3}^{\perp}}(,); 5. Singular affine plane cubic curves; 6. Smooth affine plane cubic curves
  • 7. Low-weight coefficients of _{(^{ }_{2,3})^{\perp}}(,)8. Acknowledgments; References; The distribution of the trace in the compact group of type ₂; 1. Introduction; 2. Exponential sums; 3. The group \Gtwo and its Lie algebra; 4. Real forms; 5. The Steinberg map of \Gtwo; 6. Maximal torus and alcove of \UGtwo; 7. The Steinberg map on \UGtwo; 8. The Weyl integration formula revisited; 9. Image of the alcove; 10. Distribution of the trace; 11. Moments; References; The de Rham cohomology of the Suzuki curves; 1. Introduction
  • 2. The de Rham cohomology as a representation for the Suzuki group3. The Dieudonné module and de Rham cohomology; 4. An explicit basis for the de Rham cohomology; References; Décompositions en hauteurs locales; 1. Introduction; 2. Présentation des décompositions; 3. Hauteurs globales, hauteurs locales; 4. Modèles de Moret-Bailly des variétés abéliennes; 5. Hauteur d'un point par la formule clef; 6. Décomposition de la hauteur de Faltings d'une jacobienne hyperelliptique; 7. Calculs explicites en dimension 1; \frenchrefname; Using zeta functions to factor polynomials over finite fields
  • 1. Introduction2. Schoof's algorithm; 3. Kayal's factoring idea; 4. Pila's algorithm; 5. Generalization of Kayal's factoring idea; 6. A heuristic for Hypothesis Z; 7. Weakening Hypothesis Z; 8. Using varieties other than abelian varieties; Acknowledgements; References; Canonical models of arithmetic (1; ∞)-curves; 1. Uniformizations and orders; 2. \Belyi maps; 3. Canonical models; 4. Modular interpretations; References; Maps between curves and arithmetic obstructions; 1. Introduction; 2. The fundamental group; 3. Certifying non-isomorphism; 4. Examples