|
|
|
|
LEADER |
00000cam a2200000Mu 4500 |
001 |
EBOOKCENTRAL_on1083465463 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr |n|---||||| |
008 |
190126s2019 riu o 000 0 eng d |
040 |
|
|
|a EBLCP
|b eng
|e pn
|c EBLCP
|d OCLCQ
|d LOA
|d OCLCO
|d OCLCF
|d K6U
|d OCLCO
|d OCLCQ
|d OCLCO
|d OCLCL
|
020 |
|
|
|a 9781470449155
|
020 |
|
|
|a 1470449153
|
029 |
1 |
|
|a AU@
|b 000069468752
|
035 |
|
|
|a (OCoLC)1083465463
|
050 |
|
4 |
|a QA613.66
|b .F444 2018
|
082 |
0 |
4 |
|a 514.72
|2 23
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Feehan, Paul.
|
245 |
1 |
3 |
|a An SO(3)-Monopole Cobordism Formula Relating Donaldson and Seiberg-Witten Invariants
|
260 |
|
|
|a Providence :
|b American Mathematical Society,
|c 2019.
|
300 |
|
|
|a 1 online resource (254 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Memoirs of the American Mathematical Society Ser. ;
|v v. 256
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|a Cover; Title page; Preface; Acknowledgments; Chapter 1. Introduction; 1.1. Summary of main results; 1.2. Outline of the argument; 1.2.1. Problem of overlaps; 1.2.2. Overlap space and overlap maps; 1.2.3. Associativity of splicing maps; 1.2.4. Instanton moduli space with spliced ends; 1.2.5. Space of global splicing data; 1.2.6. Definition of link of a subspace of a moduli space of ideal Seiberg-Witten monopoles; 1.2.7. Computation of intersection numbers with the link of the moduli space of ideal Seiberg-Witten monopoles; 1.3. Kotschick-Morgan Conjecture; 1.4. Outline of the monograph
|
505 |
8 |
|
|a Chapter 2. Preliminaries2.1. The moduli space of \SO(3) monopoles; 2.1.1. Clifford modules; 2.1.2. \SO(3) monopoles; 2.2. Stratum of anti-self-dual or zero-section solutions; 2.3. Strata of Seiberg-Witten or reducible solutions; 2.3.1. Seiberg-Witten monopoles; 2.3.2. Seiberg-Witten invariants; 2.3.3. Reducible \SO(3) monopoles; 2.3.4. Circle actions; 2.3.5. The virtual normal bundle of the Seiberg-Witten moduli space; 2.4. Cohomology classes on the moduli space of \SO(3) monopoles; 2.5. Donaldson invariants; 2.6. Links and the cobordism
|
505 |
8 |
|
|a Chapter 3. Diagonals of symmetric products of manifolds3.1. Definitions; 3.1.1. Subgroups of the symmetric group; 3.1.2. Definition of the diagonals; 3.1.3. Strata of the symmetric product; 3.2. Incidence relations among diagonals and strata; 3.3. Normal bundles of diagonals and strata; 3.4. Enumeration of the strata; Chapter 4. A partial Thom-Mather structure on symmetric products; 4.1. Introduction; 4.2. Diagonals in products of \RR⁴; 4.3. Families of metrics; 4.4. Overlap maps; 4.4.1. The downwards overlap map; 4.4.2. The upwards overlap map; 4.4.3. Commuting overlap maps
|
505 |
8 |
|
|a 4.4.4. The projection maps4.5. Construction of the families of locally flattened metrics; 4.6. Normal bundles of strata of \Sym^{ℓ}(); 4.7. The tubular distance function; 4.8. Decomposition of the strata; Chapter 5. The instanton moduli space with spliced ends; 5.1. Introduction; 5.2. Connections over the four-dimensional sphere; 5.3. Strata containing the product connection; 5.3.1. Tubular neighborhoods; 5.4. The splicing map with the product connection over \RR⁴; 5.5. Composition of splicing maps; 5.5.1. Definition of the overlap data; 5.5.2. Equality of splicing maps
|
505 |
8 |
|
|a 5.5.3. Symmetric group actions and quotients5.6. The spliced end of the instanton moduli space; 5.7. Tubular neighborhoods of the instanton moduli space with spliced ends; 5.8. Isotopy of the spliced end of the instanton moduli space; 5.9. Properties of the instanton moduli space with spliced ends; Chapter 6. The space of global splicing data; 6.1. Introduction; 6.2. Splicing data; 6.2.1. Background pairs; 6.2.2. Riemannian metrics; 6.2.3. Frame bundles; 6.2.4. Group actions on the frame bundles; 6.2.5. Space of splicing data; 6.3. The flattening map on pairs; 6.4. The crude splicing map
|
500 |
|
|
|a 6.4.1. The standard splicing map
|
520 |
|
|
|a The authors prove an analogue of the Kotschick-Morgan Conjecture in the context of \mathrm{SO(3)} monopoles, obtaining a formula relating the Donaldson and Seiberg-Witten invariants of smooth four-manifolds using the \mathrm{SO(3)}-monopole cobordism. The main technical difficulty in the \mathrm{SO(3)}-monopole program relating the Seiberg-Witten and Donaldson invariants has been to compute intersection pairings on links of strata of reducible \mathrm{SO(3)} monopoles, namely the moduli spaces of Seiberg-Witten monopoles lying in lower-level strata of the Uhlenbeck compactification of the modu.
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
650 |
|
0 |
|a Cobordism theory.
|
650 |
|
0 |
|a Four-manifolds (Topology)
|
650 |
|
0 |
|a Seiberg-Witten invariants.
|
650 |
|
6 |
|a Théorie des cobordismes.
|
650 |
|
6 |
|a Variétés topologiques à 4 dimensions.
|
650 |
|
6 |
|a Invariants de Seiberg-Witten.
|
650 |
|
7 |
|a Cobordism theory
|2 fast
|
650 |
|
7 |
|a Four-manifolds (Topology)
|2 fast
|
650 |
|
7 |
|a Seiberg-Witten invariants
|2 fast
|
700 |
1 |
|
|a Leness, Thomas G.
|
758 |
|
|
|i has work:
|a An SO(3)-monopole cobordism formula relating Donaldson and Seiberg-Witten invariants (Text)
|1 https://id.oclc.org/worldcat/entity/E39PCGkB778yqkQxgYFhMBbWXd
|4 https://id.oclc.org/worldcat/ontology/hasWork
|
776 |
0 |
8 |
|i Print version:
|a Feehan, Paul.
|t An SO(3)-Monopole Cobordism Formula Relating Donaldson and Seiberg-Witten Invariants.
|d Providence : American Mathematical Society, ©2019
|
830 |
|
0 |
|a Memoirs of the American Mathematical Society Ser.
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=5633663
|z Texto completo
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL5633663
|
994 |
|
|
|a 92
|b IZTAP
|