Cargando…

An SO(3)-Monopole Cobordism Formula Relating Donaldson and Seiberg-Witten Invariants

The authors prove an analogue of the Kotschick-Morgan Conjecture in the context of \mathrm{SO(3)} monopoles, obtaining a formula relating the Donaldson and Seiberg-Witten invariants of smooth four-manifolds using the \mathrm{SO(3)}-monopole cobordism. The main technical difficulty in the \mathrm{SO(...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Feehan, Paul
Otros Autores: Leness, Thomas G.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Providence : American Mathematical Society, 2019.
Colección:Memoirs of the American Mathematical Society Ser.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mu 4500
001 EBOOKCENTRAL_on1083465463
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |n|---|||||
008 190126s2019 riu o 000 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d OCLCQ  |d LOA  |d OCLCO  |d OCLCF  |d K6U  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL 
020 |a 9781470449155 
020 |a 1470449153 
029 1 |a AU@  |b 000069468752 
035 |a (OCoLC)1083465463 
050 4 |a QA613.66  |b .F444 2018 
082 0 4 |a 514.72  |2 23 
049 |a UAMI 
100 1 |a Feehan, Paul. 
245 1 3 |a An SO(3)-Monopole Cobordism Formula Relating Donaldson and Seiberg-Witten Invariants 
260 |a Providence :  |b American Mathematical Society,  |c 2019. 
300 |a 1 online resource (254 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Memoirs of the American Mathematical Society Ser. ;  |v v. 256 
588 0 |a Print version record. 
505 0 |a Cover; Title page; Preface; Acknowledgments; Chapter 1. Introduction; 1.1. Summary of main results; 1.2. Outline of the argument; 1.2.1. Problem of overlaps; 1.2.2. Overlap space and overlap maps; 1.2.3. Associativity of splicing maps; 1.2.4. Instanton moduli space with spliced ends; 1.2.5. Space of global splicing data; 1.2.6. Definition of link of a subspace of a moduli space of ideal Seiberg-Witten monopoles; 1.2.7. Computation of intersection numbers with the link of the moduli space of ideal Seiberg-Witten monopoles; 1.3. Kotschick-Morgan Conjecture; 1.4. Outline of the monograph 
505 8 |a Chapter 2. Preliminaries2.1. The moduli space of \SO(3) monopoles; 2.1.1. Clifford modules; 2.1.2. \SO(3) monopoles; 2.2. Stratum of anti-self-dual or zero-section solutions; 2.3. Strata of Seiberg-Witten or reducible solutions; 2.3.1. Seiberg-Witten monopoles; 2.3.2. Seiberg-Witten invariants; 2.3.3. Reducible \SO(3) monopoles; 2.3.4. Circle actions; 2.3.5. The virtual normal bundle of the Seiberg-Witten moduli space; 2.4. Cohomology classes on the moduli space of \SO(3) monopoles; 2.5. Donaldson invariants; 2.6. Links and the cobordism 
505 8 |a Chapter 3. Diagonals of symmetric products of manifolds3.1. Definitions; 3.1.1. Subgroups of the symmetric group; 3.1.2. Definition of the diagonals; 3.1.3. Strata of the symmetric product; 3.2. Incidence relations among diagonals and strata; 3.3. Normal bundles of diagonals and strata; 3.4. Enumeration of the strata; Chapter 4. A partial Thom-Mather structure on symmetric products; 4.1. Introduction; 4.2. Diagonals in products of \RR⁴; 4.3. Families of metrics; 4.4. Overlap maps; 4.4.1. The downwards overlap map; 4.4.2. The upwards overlap map; 4.4.3. Commuting overlap maps 
505 8 |a 4.4.4. The projection maps4.5. Construction of the families of locally flattened metrics; 4.6. Normal bundles of strata of \Sym^{ℓ}(); 4.7. The tubular distance function; 4.8. Decomposition of the strata; Chapter 5. The instanton moduli space with spliced ends; 5.1. Introduction; 5.2. Connections over the four-dimensional sphere; 5.3. Strata containing the product connection; 5.3.1. Tubular neighborhoods; 5.4. The splicing map with the product connection over \RR⁴; 5.5. Composition of splicing maps; 5.5.1. Definition of the overlap data; 5.5.2. Equality of splicing maps 
505 8 |a 5.5.3. Symmetric group actions and quotients5.6. The spliced end of the instanton moduli space; 5.7. Tubular neighborhoods of the instanton moduli space with spliced ends; 5.8. Isotopy of the spliced end of the instanton moduli space; 5.9. Properties of the instanton moduli space with spliced ends; Chapter 6. The space of global splicing data; 6.1. Introduction; 6.2. Splicing data; 6.2.1. Background pairs; 6.2.2. Riemannian metrics; 6.2.3. Frame bundles; 6.2.4. Group actions on the frame bundles; 6.2.5. Space of splicing data; 6.3. The flattening map on pairs; 6.4. The crude splicing map 
500 |a 6.4.1. The standard splicing map 
520 |a The authors prove an analogue of the Kotschick-Morgan Conjecture in the context of \mathrm{SO(3)} monopoles, obtaining a formula relating the Donaldson and Seiberg-Witten invariants of smooth four-manifolds using the \mathrm{SO(3)}-monopole cobordism. The main technical difficulty in the \mathrm{SO(3)}-monopole program relating the Seiberg-Witten and Donaldson invariants has been to compute intersection pairings on links of strata of reducible \mathrm{SO(3)} monopoles, namely the moduli spaces of Seiberg-Witten monopoles lying in lower-level strata of the Uhlenbeck compactification of the modu. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Cobordism theory. 
650 0 |a Four-manifolds (Topology) 
650 0 |a Seiberg-Witten invariants. 
650 6 |a Théorie des cobordismes. 
650 6 |a Variétés topologiques à 4 dimensions. 
650 6 |a Invariants de Seiberg-Witten. 
650 7 |a Cobordism theory  |2 fast 
650 7 |a Four-manifolds (Topology)  |2 fast 
650 7 |a Seiberg-Witten invariants  |2 fast 
700 1 |a Leness, Thomas G. 
758 |i has work:  |a An SO(3)-monopole cobordism formula relating Donaldson and Seiberg-Witten invariants (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCGkB778yqkQxgYFhMBbWXd  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Feehan, Paul.  |t An SO(3)-Monopole Cobordism Formula Relating Donaldson and Seiberg-Witten Invariants.  |d Providence : American Mathematical Society, ©2019 
830 0 |a Memoirs of the American Mathematical Society Ser. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=5633663  |z Texto completo 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL5633663 
994 |a 92  |b IZTAP