An SO(3)-Monopole Cobordism Formula Relating Donaldson and Seiberg-Witten Invariants
The authors prove an analogue of the Kotschick-Morgan Conjecture in the context of \mathrm{SO(3)} monopoles, obtaining a formula relating the Donaldson and Seiberg-Witten invariants of smooth four-manifolds using the \mathrm{SO(3)}-monopole cobordism. The main technical difficulty in the \mathrm{SO(...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Otros Autores: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Providence :
American Mathematical Society,
2019.
|
Colección: | Memoirs of the American Mathematical Society Ser.
|
Temas: | |
Acceso en línea: | Texto completo |
Sumario: | The authors prove an analogue of the Kotschick-Morgan Conjecture in the context of \mathrm{SO(3)} monopoles, obtaining a formula relating the Donaldson and Seiberg-Witten invariants of smooth four-manifolds using the \mathrm{SO(3)}-monopole cobordism. The main technical difficulty in the \mathrm{SO(3)}-monopole program relating the Seiberg-Witten and Donaldson invariants has been to compute intersection pairings on links of strata of reducible \mathrm{SO(3)} monopoles, namely the moduli spaces of Seiberg-Witten monopoles lying in lower-level strata of the Uhlenbeck compactification of the modu. |
---|---|
Notas: | 6.4.1. The standard splicing map |
Descripción Física: | 1 online resource (254 pages) |
ISBN: | 9781470449155 1470449153 |