Cargando…

Global Regularity for 2D Water Waves with Surface Tension

The authors consider the full irrotational water waves system with surface tension and no gravity in dimension two (the capillary waves system), and prove global regularity and modified scattering for suitably small and localized perturbations of a flat interface. An important point of the authors&#...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Ionescu, Alexandru D.
Otros Autores: Pusateri, Fabio
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Providence : American Mathematical Society, 2019.
Colección:Memoirs of the American Mathematical Society Ser.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Cover; Title page; Chapter 1. Introduction; 1.1. Free boundary Euler equations and water waves; 1.2. The main results; 1.3. Main ideas of the proof; 1.4. Paralinearization and the Dirichlet-Neumann operator; 1.5. Energy estimates and quartic energy inequalities; 1.6. Compatible vector-field structures; 1.7. Decay and modified scattering; 1.8. Organization; Chapter 2. Preliminaries; 2.1. Notation and basic lemmas; 2.2. The main proposition; Chapter 3. Derivation of the main scalar equation; 3.1. Symmetrization of the equations; 3.2. Higher order derivatives and weights
  • Chapter 4. Energy estimates I: high Sobolev estimates4.1. The higher order energy functional; 4.2. Analysis of the symbols and proof of Lemma 4.2; 4.3. Proof of Lemma 4.3; Chapter 5. Energy estimates II: low frequencies; 5.1. The basic low frequency energy; 5.2. The cubic low frequency energy; 5.3. Analysis of the symbols and proof of Lemma 5.2; 5.4. Proof of Lemma 5.3; Chapter 6. Energy estimates III: Weighted estimates for high frequencies; 6.1. The weighted energy functionals; 6.2. Analysis of the symbols and proof of Lemma 6.2; 6.3. Proof of Lemma 6.3
  • Chapter 7. Energy estimates IV: Weighted estimates for low frequencies7.1. The cubic low frequency weighted energy; 7.2. Analysis of the symbols and proof of Lemma 7.2; 7.3. Proof of Lemma 7.3; Chapter 8. Decay estimates; 8.1. Set up; 8.2. The "semilinear" normal form transformation; 8.3. The profile; 8.4. The -norm and proof of Proposition 8.1; 8.5. The equation for and proof of Proposition 8.5; Chapter 9. Proof of Lemma 8.6; 9.1. Proof of (9.6); 9.2. Proof of (9.7); 9.3. Proof of (9.8); Chapter 10. Modified scattering; Appendix A. Analysis of symbols; A.1. Notation
  • A.2. Quadratic symbolsAppendix B. The Dirichlet-Neumann operator; B.1. The perturbed Hilbert transform and proof of Proposition B.1; B.2. Proof of Lemma B.3; Appendix C. Elliptic bounds; C.1. The spaces _{, }; C.2. Linear, quadratic, and cubic bounds; C.3. Semilinear expansions; Bibliography; Back Cover