|
|
|
|
LEADER |
00000cam a2200000Mu 4500 |
001 |
EBOOKCENTRAL_on1083462588 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr |n|---||||| |
008 |
190126s2019 riu o 000 0 eng d |
040 |
|
|
|a EBLCP
|b eng
|e pn
|c EBLCP
|d OCLCQ
|d LOA
|d OCLCO
|d OCLCF
|d K6U
|d OCLCO
|d OCLCQ
|d OCLCO
|d OCLCL
|
020 |
|
|
|a 9781470449179
|
020 |
|
|
|a 147044917X
|
029 |
1 |
|
|a AU@
|b 000069468751
|
035 |
|
|
|a (OCoLC)1083462588
|
050 |
|
4 |
|a QC157
|b .I564 2018
|
082 |
0 |
4 |
|a 531.1133015118
|2 23
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Ionescu, Alexandru D.
|
245 |
1 |
0 |
|a Global Regularity for 2D Water Waves with Surface Tension
|
260 |
|
|
|a Providence :
|b American Mathematical Society,
|c 2019.
|
300 |
|
|
|a 1 online resource (136 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Memoirs of the American Mathematical Society Ser. ;
|v v. 256
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|a Cover; Title page; Chapter 1. Introduction; 1.1. Free boundary Euler equations and water waves; 1.2. The main results; 1.3. Main ideas of the proof; 1.4. Paralinearization and the Dirichlet-Neumann operator; 1.5. Energy estimates and quartic energy inequalities; 1.6. Compatible vector-field structures; 1.7. Decay and modified scattering; 1.8. Organization; Chapter 2. Preliminaries; 2.1. Notation and basic lemmas; 2.2. The main proposition; Chapter 3. Derivation of the main scalar equation; 3.1. Symmetrization of the equations; 3.2. Higher order derivatives and weights
|
505 |
8 |
|
|a Chapter 4. Energy estimates I: high Sobolev estimates4.1. The higher order energy functional; 4.2. Analysis of the symbols and proof of Lemma 4.2; 4.3. Proof of Lemma 4.3; Chapter 5. Energy estimates II: low frequencies; 5.1. The basic low frequency energy; 5.2. The cubic low frequency energy; 5.3. Analysis of the symbols and proof of Lemma 5.2; 5.4. Proof of Lemma 5.3; Chapter 6. Energy estimates III: Weighted estimates for high frequencies; 6.1. The weighted energy functionals; 6.2. Analysis of the symbols and proof of Lemma 6.2; 6.3. Proof of Lemma 6.3
|
505 |
8 |
|
|a Chapter 7. Energy estimates IV: Weighted estimates for low frequencies7.1. The cubic low frequency weighted energy; 7.2. Analysis of the symbols and proof of Lemma 7.2; 7.3. Proof of Lemma 7.3; Chapter 8. Decay estimates; 8.1. Set up; 8.2. The "semilinear" normal form transformation; 8.3. The profile; 8.4. The -norm and proof of Proposition 8.1; 8.5. The equation for and proof of Proposition 8.5; Chapter 9. Proof of Lemma 8.6; 9.1. Proof of (9.6); 9.2. Proof of (9.7); 9.3. Proof of (9.8); Chapter 10. Modified scattering; Appendix A. Analysis of symbols; A.1. Notation
|
505 |
8 |
|
|a A.2. Quadratic symbolsAppendix B. The Dirichlet-Neumann operator; B.1. The perturbed Hilbert transform and proof of Proposition B.1; B.2. Proof of Lemma B.3; Appendix C. Elliptic bounds; C.1. The spaces _{, }; C.2. Linear, quadratic, and cubic bounds; C.3. Semilinear expansions; Bibliography; Back Cover
|
520 |
|
|
|a The authors consider the full irrotational water waves system with surface tension and no gravity in dimension two (the capillary waves system), and prove global regularity and modified scattering for suitably small and localized perturbations of a flat interface. An important point of the authors' analysis is to develop a sufficiently robust method (the ""quasilinear I-method"") which allows the authors to deal with strong singularities arising from time resonances in the applications of the normal form method (the so-called ""division problem""). As a result, they are able to consider a suit.
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
650 |
|
0 |
|a Waves
|x Mathematical models.
|
650 |
|
0 |
|a Water waves
|x Mathematical models.
|
650 |
|
6 |
|a Ondes
|x Modèles mathématiques.
|
650 |
|
6 |
|a Vagues
|x Modèles mathématiques.
|
650 |
|
7 |
|a Water waves
|x Mathematical models
|2 fast
|
650 |
|
7 |
|a Waves
|x Mathematical models
|2 fast
|
700 |
1 |
|
|a Pusateri, Fabio.
|
758 |
|
|
|i has work:
|a Global regularity for 2D water waves with surface tension (Text)
|1 https://id.oclc.org/worldcat/entity/E39PCGTgQT6K7kd6mkv6mTRWTb
|4 https://id.oclc.org/worldcat/ontology/hasWork
|
776 |
0 |
8 |
|i Print version:
|a Ionescu, Alexandru D.
|t Global Regularity for 2D Water Waves with Surface Tension.
|d Providence : American Mathematical Society, ©2019
|
830 |
|
0 |
|a Memoirs of the American Mathematical Society Ser.
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=5633664
|z Texto completo
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL5633664
|
994 |
|
|
|a 92
|b IZTAP
|