Cargando…

Global Regularity for 2D Water Waves with Surface Tension

The authors consider the full irrotational water waves system with surface tension and no gravity in dimension two (the capillary waves system), and prove global regularity and modified scattering for suitably small and localized perturbations of a flat interface. An important point of the authors&#...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Ionescu, Alexandru D.
Otros Autores: Pusateri, Fabio
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Providence : American Mathematical Society, 2019.
Colección:Memoirs of the American Mathematical Society Ser.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mu 4500
001 EBOOKCENTRAL_on1083462588
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |n|---|||||
008 190126s2019 riu o 000 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d OCLCQ  |d LOA  |d OCLCO  |d OCLCF  |d K6U  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL 
020 |a 9781470449179 
020 |a 147044917X 
029 1 |a AU@  |b 000069468751 
035 |a (OCoLC)1083462588 
050 4 |a QC157  |b .I564 2018 
082 0 4 |a 531.1133015118  |2 23 
049 |a UAMI 
100 1 |a Ionescu, Alexandru D. 
245 1 0 |a Global Regularity for 2D Water Waves with Surface Tension 
260 |a Providence :  |b American Mathematical Society,  |c 2019. 
300 |a 1 online resource (136 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Memoirs of the American Mathematical Society Ser. ;  |v v. 256 
588 0 |a Print version record. 
505 0 |a Cover; Title page; Chapter 1. Introduction; 1.1. Free boundary Euler equations and water waves; 1.2. The main results; 1.3. Main ideas of the proof; 1.4. Paralinearization and the Dirichlet-Neumann operator; 1.5. Energy estimates and quartic energy inequalities; 1.6. Compatible vector-field structures; 1.7. Decay and modified scattering; 1.8. Organization; Chapter 2. Preliminaries; 2.1. Notation and basic lemmas; 2.2. The main proposition; Chapter 3. Derivation of the main scalar equation; 3.1. Symmetrization of the equations; 3.2. Higher order derivatives and weights 
505 8 |a Chapter 4. Energy estimates I: high Sobolev estimates4.1. The higher order energy functional; 4.2. Analysis of the symbols and proof of Lemma 4.2; 4.3. Proof of Lemma 4.3; Chapter 5. Energy estimates II: low frequencies; 5.1. The basic low frequency energy; 5.2. The cubic low frequency energy; 5.3. Analysis of the symbols and proof of Lemma 5.2; 5.4. Proof of Lemma 5.3; Chapter 6. Energy estimates III: Weighted estimates for high frequencies; 6.1. The weighted energy functionals; 6.2. Analysis of the symbols and proof of Lemma 6.2; 6.3. Proof of Lemma 6.3 
505 8 |a Chapter 7. Energy estimates IV: Weighted estimates for low frequencies7.1. The cubic low frequency weighted energy; 7.2. Analysis of the symbols and proof of Lemma 7.2; 7.3. Proof of Lemma 7.3; Chapter 8. Decay estimates; 8.1. Set up; 8.2. The "semilinear" normal form transformation; 8.3. The profile; 8.4. The -norm and proof of Proposition 8.1; 8.5. The equation for and proof of Proposition 8.5; Chapter 9. Proof of Lemma 8.6; 9.1. Proof of (9.6); 9.2. Proof of (9.7); 9.3. Proof of (9.8); Chapter 10. Modified scattering; Appendix A. Analysis of symbols; A.1. Notation 
505 8 |a A.2. Quadratic symbolsAppendix B. The Dirichlet-Neumann operator; B.1. The perturbed Hilbert transform and proof of Proposition B.1; B.2. Proof of Lemma B.3; Appendix C. Elliptic bounds; C.1. The spaces _{, }; C.2. Linear, quadratic, and cubic bounds; C.3. Semilinear expansions; Bibliography; Back Cover 
520 |a The authors consider the full irrotational water waves system with surface tension and no gravity in dimension two (the capillary waves system), and prove global regularity and modified scattering for suitably small and localized perturbations of a flat interface. An important point of the authors' analysis is to develop a sufficiently robust method (the ""quasilinear I-method"") which allows the authors to deal with strong singularities arising from time resonances in the applications of the normal form method (the so-called ""division problem""). As a result, they are able to consider a suit. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Waves  |x Mathematical models. 
650 0 |a Water waves  |x Mathematical models. 
650 6 |a Ondes  |x Modèles mathématiques. 
650 6 |a Vagues  |x Modèles mathématiques. 
650 7 |a Water waves  |x Mathematical models  |2 fast 
650 7 |a Waves  |x Mathematical models  |2 fast 
700 1 |a Pusateri, Fabio. 
758 |i has work:  |a Global regularity for 2D water waves with surface tension (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCGTgQT6K7kd6mkv6mTRWTb  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Ionescu, Alexandru D.  |t Global Regularity for 2D Water Waves with Surface Tension.  |d Providence : American Mathematical Society, ©2019 
830 0 |a Memoirs of the American Mathematical Society Ser. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=5633664  |z Texto completo 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL5633664 
994 |a 92  |b IZTAP