|
|
|
|
LEADER |
00000cam a2200000Mu 4500 |
001 |
EBOOKCENTRAL_on1083462573 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr |n|---||||| |
008 |
190126s2019 riu o 000 0 eng d |
040 |
|
|
|a EBLCP
|b eng
|e pn
|c EBLCP
|d OCLCQ
|d LOA
|d OCLCO
|d OCLCF
|d K6U
|d OCLCO
|d OCLCQ
|d OCLCO
|d OCLCL
|
020 |
|
|
|a 9781470449131
|
020 |
|
|
|a 1470449137
|
029 |
1 |
|
|a AU@
|b 000069468753
|
035 |
|
|
|a (OCoLC)1083462573
|
050 |
|
4 |
|a QA645
|b .A373 2018
|
082 |
0 |
4 |
|a 516.362
|2 23
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Agrachev, A.
|
245 |
1 |
0 |
|a Curvature
|
260 |
|
|
|a Providence :
|b American Mathematical Society,
|c 2019.
|
300 |
|
|
|a 1 online resource (154 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Memoirs of the American Mathematical Society Ser. ;
|v v. 256
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|a Cover; Title page; Chapter 1. Introduction; 1.1. Structure of the paper; 1.2. Statements of the main theorems; 1.3. The Heisenberg group; Part 1 . Statements of the results; Chapter 2. General setting; 2.1. Affine control systems; 2.2. End-point map; 2.3. Lagrange multipliers rule; 2.4. Pontryagin Maximum Principle; 2.5. Regularity of the value function; Chapter 3. Flag and growth vector of an admissible curve; 3.1. Growth vector of an admissible curve; 3.2. Linearised control system and growth vector; 3.3. State-feedback invariance of the flag of an admissible curve
|
505 |
8 |
|
|a 3.4. An alternative definitionChapter 4. Geodesic cost and its asymptotics; 4.1. Motivation: a Riemannian interlude; 4.2. Geodesic cost; 4.3. Hamiltonian inner product; 4.4. Asymptotics of the geodesic cost function and curvature; 4.5. Examples; Chapter 5. Sub-Riemannian geometry; 5.1. Basic definitions; 5.2. Existence of ample geodesics; 5.3. Reparametrization and homogeneity of the curvature operator; 5.4. Asymptotics of the sub-Laplacian of the geodesic cost; 5.5. Equiregular distributions; 5.6. Geodesic dimension and sub-Riemannian homotheties; 5.7. Heisenberg group
|
505 |
8 |
|
|a 5.8. On the "meaning" of constant curvaturePart 2 . Technical tools and proofs; Chapter 6. Jacobi curves; 6.1. Curves in the Lagrange Grassmannian; 6.2. The Jacobi curve and the second differential of the geodesic cost; 6.3. The Jacobi curve and the Hamiltonian inner product; 6.4. Proof of Theorem; 6.5. Proof of Theorem; Chapter 7. Asymptotics of the Jacobi curve: Equiregular case; 7.1. The canonical frame; 7.2. Main result; 7.3. Proof of Theorem 7.4; 7.4. Proof of Theorem; 7.5. A worked out example: 3D contact sub-Riemannian structures; Chapter 8. Sub-Laplacian and Jacobi curves
|
505 |
8 |
|
|a 8.1. Coordinate lift of a local frame8.2. Sub-Laplacian of the geodesic cost; 8.3. Proof of Theorem; Part 3 . Appendix; Appendix A. Smoothness of value function (Theorem 2.19); Appendix B. Convergence of approximating Hamiltonian systems (Proposition 5.15); Appendix C. Invariance of geodesic growth vector by dilations (Lemma 5.20); Appendix D. Regularity of (,) for the Heisenberg group (Proposition 5.51); Appendix E. Basics on curves in Grassmannians (Lemma 3.5 and 6.5); Appendix F. Normal conditions for the canonical frame
|
505 |
8 |
|
|a Appendix G. Coordinate representation of flat, rank 1 Jacobi curves (Proposition 7.7)Appendix H.A binomial identity (Lemma 7.8); Appendix I.A geometrical interpretation of _{ }; Bibliography; Index; Back Cover
|
520 |
|
|
|a The curvature discussed in this paper is a far reaching generalization of the Riemannian sectional curvature. The authors give a unified definition of curvature which applies to a wide class of geometric structures whose geodesics arise from optimal control problems, including Riemannian, sub-Riemannian, Finsler and sub-Finsler spaces. Special attention is paid to the sub-Riemannian (or Carnot-Carathéodory) metric spaces. The authors' construction of curvature is direct and naive, and similar to the original approach of Riemann. In particular, they extract geometric invariants from the asympto.
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
650 |
|
0 |
|a Curvature.
|
650 |
|
0 |
|a Riemannian manifolds.
|
650 |
|
0 |
|a Geometry, Differential.
|
650 |
|
6 |
|a Courbure.
|
650 |
|
6 |
|a Variétés de Riemann.
|
650 |
|
6 |
|a Géométrie différentielle.
|
650 |
|
7 |
|a Curvature
|2 fast
|
650 |
|
7 |
|a Geometry, Differential
|2 fast
|
650 |
|
7 |
|a Riemannian manifolds
|2 fast
|
700 |
1 |
|
|a Barilari, D.
|
700 |
1 |
|
|a Rizzi, L.
|
758 |
|
|
|i has work:
|a Curvature (Text)
|1 https://id.oclc.org/worldcat/entity/E39PCFHcCKphBcfPGDJrwvmTpP
|4 https://id.oclc.org/worldcat/ontology/hasWork
|
776 |
0 |
8 |
|i Print version:
|a Agrachev, A.
|t Curvature: a Variational Approach.
|d Providence : American Mathematical Society, ©2019
|
830 |
|
0 |
|a Memoirs of the American Mathematical Society Ser.
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=5633662
|z Texto completo
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL5633662
|
994 |
|
|
|a 92
|b IZTAP
|