Cargando…

Curvature

The curvature discussed in this paper is a far reaching generalization of the Riemannian sectional curvature. The authors give a unified definition of curvature which applies to a wide class of geometric structures whose geodesics arise from optimal control problems, including Riemannian, sub-Rieman...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Agrachev, A.
Otros Autores: Barilari, D., Rizzi, L.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Providence : American Mathematical Society, 2019.
Colección:Memoirs of the American Mathematical Society Ser.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mu 4500
001 EBOOKCENTRAL_on1083462573
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |n|---|||||
008 190126s2019 riu o 000 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d OCLCQ  |d LOA  |d OCLCO  |d OCLCF  |d K6U  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL 
020 |a 9781470449131 
020 |a 1470449137 
029 1 |a AU@  |b 000069468753 
035 |a (OCoLC)1083462573 
050 4 |a QA645  |b .A373 2018 
082 0 4 |a 516.362  |2 23 
049 |a UAMI 
100 1 |a Agrachev, A. 
245 1 0 |a Curvature 
260 |a Providence :  |b American Mathematical Society,  |c 2019. 
300 |a 1 online resource (154 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Memoirs of the American Mathematical Society Ser. ;  |v v. 256 
588 0 |a Print version record. 
505 0 |a Cover; Title page; Chapter 1. Introduction; 1.1. Structure of the paper; 1.2. Statements of the main theorems; 1.3. The Heisenberg group; Part 1 . Statements of the results; Chapter 2. General setting; 2.1. Affine control systems; 2.2. End-point map; 2.3. Lagrange multipliers rule; 2.4. Pontryagin Maximum Principle; 2.5. Regularity of the value function; Chapter 3. Flag and growth vector of an admissible curve; 3.1. Growth vector of an admissible curve; 3.2. Linearised control system and growth vector; 3.3. State-feedback invariance of the flag of an admissible curve 
505 8 |a 3.4. An alternative definitionChapter 4. Geodesic cost and its asymptotics; 4.1. Motivation: a Riemannian interlude; 4.2. Geodesic cost; 4.3. Hamiltonian inner product; 4.4. Asymptotics of the geodesic cost function and curvature; 4.5. Examples; Chapter 5. Sub-Riemannian geometry; 5.1. Basic definitions; 5.2. Existence of ample geodesics; 5.3. Reparametrization and homogeneity of the curvature operator; 5.4. Asymptotics of the sub-Laplacian of the geodesic cost; 5.5. Equiregular distributions; 5.6. Geodesic dimension and sub-Riemannian homotheties; 5.7. Heisenberg group 
505 8 |a 5.8. On the "meaning" of constant curvaturePart 2 . Technical tools and proofs; Chapter 6. Jacobi curves; 6.1. Curves in the Lagrange Grassmannian; 6.2. The Jacobi curve and the second differential of the geodesic cost; 6.3. The Jacobi curve and the Hamiltonian inner product; 6.4. Proof of Theorem; 6.5. Proof of Theorem; Chapter 7. Asymptotics of the Jacobi curve: Equiregular case; 7.1. The canonical frame; 7.2. Main result; 7.3. Proof of Theorem 7.4; 7.4. Proof of Theorem; 7.5. A worked out example: 3D contact sub-Riemannian structures; Chapter 8. Sub-Laplacian and Jacobi curves 
505 8 |a 8.1. Coordinate lift of a local frame8.2. Sub-Laplacian of the geodesic cost; 8.3. Proof of Theorem; Part 3 . Appendix; Appendix A. Smoothness of value function (Theorem 2.19); Appendix B. Convergence of approximating Hamiltonian systems (Proposition 5.15); Appendix C. Invariance of geodesic growth vector by dilations (Lemma 5.20); Appendix D. Regularity of (,) for the Heisenberg group (Proposition 5.51); Appendix E. Basics on curves in Grassmannians (Lemma 3.5 and 6.5); Appendix F. Normal conditions for the canonical frame 
505 8 |a Appendix G. Coordinate representation of flat, rank 1 Jacobi curves (Proposition 7.7)Appendix H.A binomial identity (Lemma 7.8); Appendix I.A geometrical interpretation of _{ }; Bibliography; Index; Back Cover 
520 |a The curvature discussed in this paper is a far reaching generalization of the Riemannian sectional curvature. The authors give a unified definition of curvature which applies to a wide class of geometric structures whose geodesics arise from optimal control problems, including Riemannian, sub-Riemannian, Finsler and sub-Finsler spaces. Special attention is paid to the sub-Riemannian (or Carnot-Carathéodory) metric spaces. The authors' construction of curvature is direct and naive, and similar to the original approach of Riemann. In particular, they extract geometric invariants from the asympto. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Curvature. 
650 0 |a Riemannian manifolds. 
650 0 |a Geometry, Differential. 
650 6 |a Courbure. 
650 6 |a Variétés de Riemann. 
650 6 |a Géométrie différentielle. 
650 7 |a Curvature  |2 fast 
650 7 |a Geometry, Differential  |2 fast 
650 7 |a Riemannian manifolds  |2 fast 
700 1 |a Barilari, D. 
700 1 |a Rizzi, L. 
758 |i has work:  |a Curvature (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCFHcCKphBcfPGDJrwvmTpP  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Agrachev, A.  |t Curvature: a Variational Approach.  |d Providence : American Mathematical Society, ©2019 
830 0 |a Memoirs of the American Mathematical Society Ser. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=5633662  |z Texto completo 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL5633662 
994 |a 92  |b IZTAP